Std: XI Science

Chemistry Answer key
Max Marks: 55

Date: 07/03/2020

Instructions:-

1. All questions are compulsory; however question 23, 26, and 27 has internal choice.
2. Use of calculator is not permitted, however logarithmic table will be provided on request.
3. Every Question should be attempted only once.

Section-A consists of 9 questions of 1 mark each.
Section-B consists of 10 questions of 2 marks each.
Section-C consists of 6 questions of 3 marks each.
Section-D consists of 2 questions of 4 marks each.

	Section-A	
Q.1.	The mathematical expression for the first law of thermodynamics when heat is supplied to the system and work is done by the system is $\boldsymbol{\Delta \mathbf { U } = \mathbf { q } - \mathbf { W }}$ $\# \Delta \mathrm{U}=\mathrm{q}+\mathrm{w} \quad \# \Delta \mathrm{U}=-\mathrm{q}+\mathrm{w} \quad \# \Delta \mathrm{U}=\mathrm{q}-\mathrm{w} \quad \# \Delta \mathrm{U}=-\mathrm{q}-\mathrm{w}$	(1)
Q. 2	The oxidation state of Mn is $+7 \mathrm{in} \mathbf{K M n O}_{4}$. $\# \mathrm{MnO}_{2} \quad \# \mathbf{K M n O}_{4} \quad \# \mathrm{Mn}_{3} \mathrm{O}_{4} \quad \# \mathrm{~K}_{2} \mathrm{MnO}_{4}$	(1)
Q.3.	The conjugate base of $\mathrm{HSO}_{3}{ }^{-}$is \qquad a) $\mathrm{H}_{2} \mathrm{SO}_{4}$ b) $\mathrm{SO}_{3}{ }^{2-}$ c) $\mathrm{HSO}_{4}{ }^{-}$ d) $\mathrm{H}_{2} \mathrm{SO}_{3}$	(1)
Q.4.	The most Thermally unstable metal carbonate which decomposes to give metal oxide and CO_{2} among the following is $\mathbf{M g C O}_{3}$. a) MgCO_{3} b) CaCO_{3} c) SrCO_{3} d) BaCO_{3}.	(1)
Q.5.	Boric acid is an acid because its molecule accepts $\mathbf{O H}^{-}$from water releasing proton. \# contains replaceable H^{+}ion \quad \# combines with proton from water molecule \# accepts $\mathbf{O H}^{-}$from water releasing proton \# gives up a proton	(1)
Q.6.	Write a mathematical expression showing relation between standard Gibbs free energy change and equilibrium constant K . $\text { Ans: } \Delta G^{0}=-2.303 R T \log K$	(1)
Q. 7	Draw a neat labelled diagram of Daniel Cell.	(1)
Q. 8	Write a point of distinction between oxidation and reduction with respect to the oxidation number. Oxidation: oxidation number increases Reduction: oxidation number decreases	(1)
Q. 9	Write the IUPAC name and symbol for the element having atomic number 107. Unnilseptium Uns	(1)

www.vijaynazare.weebly.com

	Section-B	(2)
Q. 10	An aqueous solution of copper sulphate appeared blue in colour. When zinc powder was added to the same blue solution, copper sulphate solution slowly turned colourless. (a) Name the type of redox reaction taking place in the above process. Metal displacement redox reaction (b) Identify and write the substance undergoing oxidation and reduction in the same. Oxidation: Zinc and reduction: copper	(2)
Q. 11	Answer the following using the given standard electrode potential values. $\mathrm{E}^{\circ} \mathrm{Cr}^{3+} / \mathrm{Cr}=-0.75 \mathrm{~V} \quad \text { and } \quad \mathrm{E}^{\circ}{ }_{\mathrm{Fe}}{ }^{2+} / \mathrm{Fe}=-0.45 \mathrm{~V}$ (a) Calculate e.m.f. of the cell. $\begin{aligned} \mathrm{Emf} & =\mathrm{E}^{0} \text { cathode }-\mathrm{E}^{0} \text { anode } \\ & =-0.45-(-0.75)=0.30 \mathrm{~V} \end{aligned}$ (b) Name the oxidising agent. Iron	(2)
Q. 12	With respect to group 2 elements explain the following: a) Trends in ionization enthalpy down the group Since the atomic size increases down the group, their ionization enthalpy decreases The first ionisation enthalpies of the alkaline earth metals are higher than those of the corresponding Group 1 metals. This is due to their small size as compared to the corresponding alkali metals. It is interesting to note that the second ionisation enthalpies of the alkaline earth metals are smaller than those of the corresponding alkali metals. b) Any two diagonal relationships between lithium and magnesium. (i) Both lithium and magnesium are harder and lighter than other elements in the respective groups. (ii) Lithium and magnesium react slowly with water. Their oxides and hydroxides are much less soluble and their hydroxides decompose on heating. (iii) Both form a nitride, $\mathrm{Li}_{3} \mathrm{~N}$ and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$, by direct combination with nitrogen. (iv) The oxides, $\mathrm{Li}_{2} \mathrm{O}$ and MgO do not combine with excess oxygen to give any superoxide. (v) The carbonates of lithium and magnesium decompose easily on heating to form the oxides and CO_{2}. Solid hydrogencarbonates are not formed by lithium and magnesium. (vi) Both LiCl and MgCl_{2} are soluble in ethanol. (vii)Both LiCl and MgCl_{2} are deliquescent and crystallise from aqueous solution as hydrates, $\mathrm{LiCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgCl}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$.	(2)
Q. 13	a) Write the preparation of NaHCO_{3} with a balanced Chemical reaction. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathbf{2} \mathrm{NaHCO}_{3}$ b) State any two uses of Caustic Soda. Manufacturing of paper ,artificial silk, soaps and chemicals ,in petroleum refining purification of bauxite, in textile industries, preparation of pure fats and oils and as a laboratory reagent	(2)
Q. 14	Give reason for the following. a) Carbon shows anomalous behaviour. Small size, high ionization enthalpy, high electronegativity, absence of d orbital b) Diamond is the hardest substance on the earth. Due to extended covalent bond which is difficult to break.	(2)
Q. 15	Write the chemical reaction for each of the following: a) Wurtz reaction Alkyl halides on treatment with sodium metal in dry ethereal (free from moisture) solution give higher alkanes. This reaction is known as Wurtz reaction and is used for the preparation of higher alkanes containing even number of carbon atoms.	(2)

	$\mathrm{CH}_{3} \mathrm{Br}+2 \mathrm{Na}+\mathrm{BrCH}_{3} \xrightarrow{\text { dry ether }} \mathrm{CH}_{3}-\mathrm{CH}_{3}+2 \mathrm{NaBr}$ Bromomethane Ethane $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+2 \mathrm{Na}+\mathrm{BrC}_{2} \mathrm{H}_{5} \xrightarrow{\text { dry ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{NaBr} \\ & \text { Bromoethane } \quad \text { n-Butane } \end{aligned}$ b) Friedal-Craft's alkylation reaction.	
Q.16.	Answer the following: (a) State Pauli's exclusion principle. Only two electrons may exist in the same orbital and these electrons must have opposite spin (b) Write the designation of the orbital with the following quantum number: $\begin{gathered} n=3, l=2 \\ 3 d \end{gathered} \quad \text { and } \quad n=2, l=1$	(2)
Q.17.	Calculate ΔH for the following reaction $\mathbf{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=\ldots ? \ldots \mathrm{KJ} / \mathrm{mol}$ This reaction takes place in two steps as follows : In the first step Nitrogen reacts with oxygen to produce Nitric oxide $\mathbf{N}_{2}(\mathrm{~g})+\mathbf{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g}) ; \Delta \mathrm{H}_{1}=+180 \mathrm{KJ} / \mathrm{mol}$ In the second step $\mathbf{N O}$ formed reacts with more oxygen to produce $\mathbf{N O}_{\mathbf{2}}$ $\mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}}(\mathrm{g}) ; \Delta \mathrm{H}_{2}=-\mathbf{1 1 2} \mathbf{K J} / \mathbf{m o l}$ Ans: Step-I+ Step-II gives us the required equation Therefore according to Hess's law we have $\begin{aligned} & \Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2} \\ & \Delta \mathrm{H}=+180+(-112) \mathrm{KJ} / \mathrm{mol} \\ & \Delta \mathrm{H}=(+180-112) \mathrm{KJ} / \mathrm{mol} \\ & \Delta \mathrm{H}=+68 \mathrm{KJ} / \mathrm{mol} \end{aligned}$	(2)
Q. 18	On the basis of Le Chatelier's Principle explain, a) How the temperature and pressure can be adjusted to increase the yield of ammonia in the following reaction? $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}): \Delta \mathrm{H}=-92.38 \mathrm{kJmol}-^{1}$ Ans: Effect of temperature: The reaction is exothermic, hence it will shift in forward direction by lowering the temperature. Thus, better yield of ammonia will be obtained at low but moderate temperature, otherwise reaction will become very slow. Effect of pressure: $\Delta \mathrm{ng}=2-4=-2$. Volume is decreasing in forward direction; hence it will shift in forward direction, on increasing the pressure. Effect of inert gas addition: At constant volume, there is no effect of addition of Argon.	(2)

www.vijaynazare.weebly.com

	b) What will be the effect of addition of argon to the above reaction mixture at constant volume. There will be NO effect of addition of argon to the above reaction mixture at constant volume.	
Q. 19	A balloon is blown up at $5^{\circ} \mathrm{C}$ has a volume of 480 mL . The maximum volume capacity of the balloon is 548.6 mL .will the balloon burst if it is brought to a room having temperature of $30^{\circ} \mathrm{C}$? $\mathrm{T}_{1}=5^{\circ} \mathrm{C}=278 \mathrm{~K}, \mathrm{~V}_{1}=480 \mathrm{~mL} . \mathrm{T}_{2}=30^{\circ} \mathrm{C}=303 \mathrm{~K}, \mathrm{~V}_{2}=?$ $\begin{array}{\|l\|} \hline \mathrm{V} 1 / \mathrm{T} 1=\mathrm{V} 2 / \mathrm{T} 2 \\ 480 / 278=\mathrm{V} 2 / 303 \end{array}$ $\mathrm{V} 2=523.16 \mathrm{ml}$ Since the maximum capacity of the balloon is 548.6 mL , the balloon will not burst at $30^{\circ} \mathrm{C}$ as it will occupy volume of only 523.16 ml at this temperature.	(2)
	Section-C	
Q. 20	a) Distinguish between saturated and unsaturated hydrocarbons. b) Draw the following: i) Newmann projection formula for staggered and eclipsed conformation of ethane molecule. (i) Eclipsed (Newman projection) (ii) Staggered (Newman projection) ii) Geometrical isomers of But-2-ene. cis-2-butene trans-2-butene	(3)
Q. 21	a) Why does branched chain alkanes have lower boiling point than straight chain alkanes? Branched chain alkanes have lower boiling point than straight chain alkanes due to the fact that with the increase in number of branched chain the molecule attains the shape of a sphere. This results in smaller area of contact therefore weak intermolecular forces between spherical molecules. b) Name the major product obtained on reaction of hydrogen bromide with butene in presence of peroxide.	(3)

	anti-Markovnikov 1-bromobutane c) Identify which of the following is not an aromatic compound and write its name. Ans: Name: Cyclopentadiene (not fully conjugated, one C is sp ${ }^{3}$ hybridized)	
Q. 22	Write the IUPAC nomenclature for the following compounds: (i) Pentan-2-ol (ii) 2-methyl propanoic acid (iii) Butan-2-one	(3)
Q. 23	With respect to Boron family answer the following questions. a. Why BF_{3} behaves as a lewis acid. Boron is electron deficient and can accept electrons hence behave as a lewis acid. b. Draw the dimeric structure of Aluminum chloride. c. Complete the following equation $2 \mathrm{Al}_{(\mathrm{s})}+\underline{2 \mathrm{NaOH}_{(\mathrm{aq})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}} \rightarrow 2 \mathrm{Na}^{+}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{(\mathrm{aq})}^{-}+\underline{\mathbf{3 H}_{2}(\mathrm{~g})}$	(3)
Q. 23	With respect to Carbon family answer the following questions a. Write a point of difference between Graphite and Diamond with respect to type of hybridisation the carbon atom has undergone. Graphite $\mathbf{s p}^{\mathbf{2}}$ hybridised and diamond $\mathbf{s p}^{\mathbf{3}}$ hybridised b. Draw the basic structural unit of silicates is $\mathrm{SiO}_{4}{ }^{4-}$ (a) - Silicon Oxygen (b) (a) Tetrahedral structure of SiO_{4}^{4-} anion; (b) Representation of SiO_{4}^{4} unit	(3)

	c.Complete the following equation $\mathrm{CaCO}_{3}+\underline{2 \mathrm{HCl}} \rightarrow \mathrm{CaCl}_{2}+{\underline{\mathrm{CO}_{2}}}_{2}+\mathrm{H}_{2} \mathrm{O}$	
Q. 24	Define the following a) Isolated System. A system in which there is no exchange of energy nor matter between the system and the surroundings b) Standard enthalpy of sublimation Standard enthalpy of sublimation, $\Delta \mathrm{subH}^{0}$ is the change in enthalpy when one mole of a solid substance sublimes at a constant temperature and under standard pressure (1bar). c) Entropy of the system Entropy can be thought of as a measure of the randomness of a system. OR Entropy is the measure of the disorder of a system.	(3)
Q. 25	(a) Write the hybridisation of sulphur in SF_{6} and comment on its geometry. $\mathbf{S p}^{3} \mathbf{d}^{2} \text { hybridised . octahedral geometry }$ (b) Draw the Molecular Orbital diagram for O_{2} molecule. Also find its bond order and comment on its magnetic character. Bond order (B.O.) $=($ No. of electrons in BMO - No. of electrons in ABMO)/ 2 Bond order= $8-4 / 2=2$ Double bond. Magnetic character : two unpaired electrons Paramagnetic	(3)
	Section-D	
Q. 26	a)Define Buffer solutions A solution which resists changes in $\mathbf{~} \mathbf{H}$ when dilute acid or alkali is added to it is called as buffer solution b) Give a point of difference between homogeneous equilibrium and heterogeneous equilibrium. homogeneous equilibrium: The reactans and the products are in same phase when the system is in equilibrium	(4)

	heterogeneous equilibrium: The reactans and the products are in different phase when the system is in equilibrium c) For the following reaction, $\mathrm{Kc}=4.8 \times 10^{-31}$ and $\mathrm{Qc}=3.8 \times 10^{-38}$ at 298 K . Predict the direction of the reaction. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})$ The direction of the reaction: The reaction proceeds towards formation of products/towards Right as Qc value is less than Kc d) Write the reaction showing the Amphoteric nature of water. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ OR
Q. 26	a) Define ionic equilibrium. Ionic equilibrium: is the equilibrium established between the unionized molecules and the ions in a solution. b) Give a point of difference between lewis acid and lewis base. lewis acid :Substances which lack electrons or are electron deficient, eg $\mathrm{BF}_{3}, \mathrm{AlCl}_{3}$ etc A Lewis acid is therefore an electron-pair acceptor. lewis base : Substances which are electrons rich for e.g $\mathbf{O H}^{-}, \mathbf{N H}_{\mathbf{3}}, \mathbf{H}_{\mathbf{2}} \mathbf{O}$ etc A Lewis base is therefore an electron-pair donor. c) $\mathrm{I}_{2}(\mathrm{~g})+\mathbf{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathbf{2} \mathbf{H I}(\mathrm{g})$ For the following reaction, $\mathrm{Kc}=57.0$,at 500 K . predict the extent of the reaction. The reactants and the products are almost in an equilibrium d) Write the formula for the ionic product of water. Ionic product of water: $\mathbf{K w}=\left[\mathbf{H}^{+}\right]\left[{ }^{-} \mathbf{O H}\right]$
Q. 27	Write the chemical equation for each of the following: a) Nitration of benzene b) Decarboxylation of sodium acetate c) Aromatisation of n-hexane

www.vijaynazare.weebly.com

