# Shri Shantadurga Higher Secondary School, Bicholim-Goa. <u>Final Examination March-2020</u>

| Std: 2 | Science Max Marks: 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Date:  | 7/03/2020 Chemistry Answer key Duration: 150 Minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|        | Instructions:-<br>1. All questions are compulsory; however question 23, 26, and 27 has internal choice.<br>2. Use of calculator is not permitted, however logarithmic table will be provided on requis<br>3. Every Question should be attempted only once.<br>Section-A consists of 9 questions of 1 mark each.<br>Section-B consists of 10 questions of 2 marks each.<br>Section-C consists of 6 questions of 3 marks each.<br>Section-D consists of 2 questions of 4 marks each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | est. |
|        | Seedler A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|        | <u>Section-A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Q.1.   | The mathematical expression for the first law of thermodynamics when heat is supplied<br>to the system and work is done by the system is $\Delta U = q \cdot w$<br>$\# \Delta U = q + w$ $\# \Delta U = -q + w$ $\# \Delta U = q \cdot w$ $\# \Delta U = -q \cdot w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)  |
| Q.2    | The oxidation state of Mn is $+7$ in <u><b>KMnO</b><sub>4</sub></u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)  |
|        | $\# MnO_2 \qquad \# \mathbf{K}\mathbf{MnO_4} \qquad \# Mn_3O_4 \qquad \# K_2MnO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Q.3.   | The conjugate base of $HSO_3^-$ is $\underline{SO_3^-}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)  |
|        | a) $H_2SO_4$ b) $SO_3^{2-}$ c) $HSO_4^{-}$ d) $H_2SO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Q.4.   | The most Thermally unstable metal carbonate which decomposes to give metal oxide and $CO_2$ among the following is <u>MgCO_3</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)  |
|        | a) $MgCO_3$ b) $CaCO_3$ c) $SrCO_3$ d) $BaCO_3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| Q.5.   | Boric acid is an acid because its molecule <b>accepts OH</b> from water releasing proton.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)  |
|        | # contains replaceable $H^+$ ion # combines with proton from water molecule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|        | # accepts OH <sup>-</sup> from water releasing proton # gives up a proton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Q.6.   | Write a mathematical expression showing relation between standard Gibbs free energy change and equilibrium constant K.<br>Ans: $\Delta C^0 = -2.303 \text{RT} \log K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)  |
| Q.7    | Draw a neat labelled diagram of <b>Daniel Cell</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1)  |
| Q.8    | Current flow $\leftarrow$ Switch<br>Anode $\downarrow$ Switch<br>Anode $\downarrow$ Salt<br>bridge $\downarrow$ Cathode<br>$\downarrow$ | (1)  |
| 0.0    | Reduction: oxidation number decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)  |
| Q.9    | write the IUPAC name and symbol for the element having atomic number 107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)  |
|        | Unnuseptium Uns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |

# uuuu uijaunazare weeblu com

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\mathbf{a})$ |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | Section-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)            |
| Q.10 | <ul> <li>An aqueous solution of copper sulphate appeared blue in colour. When zinc powder was added to the same blue solution, copper sulphate solution slowly turned colourless.</li> <li>(a) Name the type of redox reaction taking place in the above process.</li> <li>Metal displacement redox reaction</li> <li>(b) Identify and write the substance undergoing oxidation and reduction in the same.</li> <li>Oxidation: Zinc and reduction: copper</li> </ul>                                | (2)            |
| Q.11 | Answer the following using the given standard electrode potential values.                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)            |
|      | $E^{\circ}_{Cr}{}^{3+}_{/Cr} = -0.75V$ and $E^{\circ}_{Fe}{}^{2+}_{/Fe} = -0.45V$                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|      | (a) Calculate e.m.f. of the cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|      | $\mathbf{Emf} = \mathbf{E}^{0}$ cathode $-\mathbf{E}^{0}$ anode                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|      | = -0.45 - (-0.75) = 0.30V                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|      | (b) Name the oxidising agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|      | Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Q.12 | <ul> <li>a) Trends in ionization enthalpy down the group</li> <li>Since the atomic size increases down the group, their ionization enthalpy decreases</li> <li>The first ionisation enthalpies of the alkaline earth metals are higher than those</li> <li>of the corresponding Group 1 metals.</li> <li>This is due to their small size as compared to the corresponding alkali metals</li> </ul>                                                                                                  | (2)            |
|      | <ul> <li>It is interesting to note that the second ionisation enthalpies of the alkaline earth metals are smaller than those of the corresponding alkali metals.</li> <li>b) Any two diagonal relationships between lithium and magnesium.</li> <li>(i) Both lithium and magnesium are harder and lighter than other elements in the respective groups.</li> </ul>                                                                                                                                  |                |
|      | <ul> <li>(ii) Lithium and magnesium react slowly with water. Their oxides and hydroxides are much less soluble and their hydroxides decompose on heating.</li> <li>(iii) Both form a nitride, Li<sub>3</sub>N and Mg<sub>3</sub>N<sub>2</sub>, by direct combination with nitrogen.</li> <li>(iv) The oxides, Li<sub>2</sub>O and MgO do not combine with excess oxygen to give any superoxide.</li> <li>(v) The carbonates of lithium and magnesium decompose easily on heating to form</li> </ul> |                |
|      | <ul> <li>the oxides and CO<sub>2</sub>. Solid hydrogencarbonates are not formed by lithium and magnesium.</li> <li>(vi) Both LiCl and MgCl<sub>2</sub> are soluble in ethanol.</li> <li>(vii)Both LiCl and MgCl<sub>2</sub> are deliquescent and crystallise from aqueous solution as</li> </ul>                                                                                                                                                                                                    |                |
|      | hydrates, LiCl·2H <sub>2</sub> O and MgCl <sub>2</sub> ·8H <sub>2</sub> O.                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Q.13 | a) Write the preparation of NaHCO <sub>3</sub> with a balanced Chemical reaction.                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)            |
|      | $Na_2CO_3 + H_2O + CO_2 \rightarrow 2NaHCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|      | b) State any two uses of <b>Caustic Soda</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|      | Manufacturing of paper ,artificial silk, soaps and chemicals ,in petroleum refining purification of bauxite ,in textile industries , preparation of pure fats and oils and as a laboratory reagent                                                                                                                                                                                                                                                                                                  |                |
| Q.14 | Give reason for the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)            |
|      | a) Carbon shows anomalous behaviour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|      | Small size, high ionization enthalpy, high electronegativity, absence of d orbital                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|      | b) Diamond is the hardest substance on the earth.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|      | Due to extended covalent bond which is difficult to break.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Q.15 | Write the chemical reaction for each of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2)            |
|      | a) Wurtz reaction<br>Alkyl halides on treatment with sodium metal in dry ethereal (free from moisture)<br>solution give higher alkanes. This reaction is known as Wurtz reaction and is used<br>for the preparation of higher alkanes containing even number of carbon atoms.                                                                                                                                                                                                                       |                |



## b) What will be the effect of addition of argon to the above reaction mixture at constant volume. There will be NO effect of addition of argon to the above reaction mixture at constant volume. Q.19 A balloon is blown up at 5 °C has a volume of 480mL. The maximum volume capacity (2) of the balloon is 548.6mL.will the balloon burst if it is brought to a room having temperature of 30°C? $T_1 = 5 \degree C = 278 \text{ K}$ , $V_1 = 480 \text{ mL}$ . $T_2 = 30 \degree C = 303 \text{ K}$ , $V_2 = ?$ V1/T1=V2/T2 480/278=V2/303 V2=523.16 ml Since the maximum capacity of the balloon is 548.6mL, the balloon will not burst at 30°C as it will occupy volume of only 523.16 ml at this temperature. Section-C Q.20 (3) a) Distinguish between saturated and unsaturated hydrocarbons. Saturated hydrocarbons Unsaturated hydrocarbons These are the organic compounds in These are the organic compounds in which C-C and C-H singe bonds are which C-C multiple bonds are present. present i.e. double or triple bond or both. b) Draw the following: i) Newmann projection formula for staggered and eclipsed conformation of ethane molecule. Dihedral angle н (i) Eclipsed (ii) Staggered (Newman projection) (Newman projection) ii) Geometrical isomers of But-2-ene. CH, CH cis-2-butene trans-2-butene Q.21 (3)a) Why does branched chain alkanes have lower boiling point than straight chain alkanes? Branched chain alkanes have lower boiling point than straight chain alkanes due to the fact that with the increase in number of branched chain the molecule attains the shape of a sphere. This results in smaller area of contact therefore weak intermolecular forces between spherical molecules. b) Name the major product obtained on reaction of hydrogen bromide with butene in presence of peroxide.



|          | c.Complete the following equation<br>$CaCO_3 + 2 HCl \rightarrow CaCl_2 + CO_2 + H_2O$                                                                                                                                                                                                                    |     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0.24     | Define the following                                                                                                                                                                                                                                                                                      | (3) |
| Q.21     | <ul> <li>a) Isolated System.</li> <li>A system in which there is no exchange of energy nor matter between the system and the surroundings</li> <li>b) Standard enthalpy of sublimation</li> <li>Standard enthalpy of sublimation, ΔsubH<sup>0</sup> is the change in enthalpy when one mole of</li> </ul> |     |
|          | <ul> <li>a solid substance sublimes at a constant temperature and under standard pressure (1bar).</li> <li>c) Entropy of the system</li> <li>Entropy can be thought of as a measure of the randomness of a system.</li> </ul>                                                                             |     |
|          | <b>OR</b> Entropy is the measure of the disorder of a system.                                                                                                                                                                                                                                             |     |
| Q.25     | (a) Write the hybridisation of sulphur in $SF_6$ and comment on its geometry.                                                                                                                                                                                                                             | (3) |
|          | <b>Sp'd</b> <sup>2</sup> hybridised . <b>octahedral geometry</b>                                                                                                                                                                                                                                          |     |
|          | (b) Draw the Molecular Orbital diagram for $O_2$ molecule.                                                                                                                                                                                                                                                |     |
|          | Also find its bond order and comment on its magnetic character.                                                                                                                                                                                                                                           |     |
|          | o o <sub>2</sub> O                                                                                                                                                                                                                                                                                        |     |
|          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                  |     |
|          |                                                                                                                                                                                                                                                                                                           |     |
|          | Bond order $(B, U, J) = (100, 0)$ electrons in BIVIU - No. of electrons in ABIVIU// 2<br>Bond order = $8 \cdot 4/2 = 2$ Double bond                                                                                                                                                                       |     |
|          | Magnetic character : two unpaired electrons Paramagnetic                                                                                                                                                                                                                                                  |     |
|          | Section-D                                                                                                                                                                                                                                                                                                 |     |
| 0.26     | a)Define Buffer solutions                                                                                                                                                                                                                                                                                 | (4) |
| <b>X</b> | A solution which <b>resists changes in pH</b> when <b>dilute acid or alkali</b> is added to it is called as                                                                                                                                                                                               |     |
|          | buffer solution                                                                                                                                                                                                                                                                                           |     |
|          | b) Give a point of difference between homogeneous equilibrium and heterogeneous                                                                                                                                                                                                                           |     |
|          | equilibrium.                                                                                                                                                                                                                                                                                              |     |
|          | homogeneous equilibrium: The reactans and the products are in same phase when the                                                                                                                                                                                                                         |     |
|          | system is in equilibrium                                                                                                                                                                                                                                                                                  |     |

|      | www.vijaynazare.weebly.com                                                                                       |     |
|------|------------------------------------------------------------------------------------------------------------------|-----|
|      | heterogeneous equilibrium: The reactans and the products are in different phase when                             |     |
|      | the system is in equilibrium                                                                                     |     |
|      | c) For the following reaction, $Kc = 4.8 \times 10^{-31}$ and $Qc = 3.8 \times 10^{-38}$ at 298 K.               |     |
|      | Predict the direction of the reaction.                                                                           |     |
|      | $N_2(g)+O_2(g)\rightleftharpoons 2NO(g)$                                                                         |     |
|      | The direction of the reaction: The reaction proceeds towards formation of                                        |     |
|      | products/towards Right as Qc value is less than Kc                                                               |     |
|      | d) Write the reaction showing the Amphoteric nature of water.                                                    |     |
|      | $H_2O + H_2O \rightarrow OH^- + H_3O^+$                                                                          |     |
|      | OR                                                                                                               |     |
|      | a) Define <b>ionic equilibrium.</b>                                                                              |     |
| Q.26 | Ionic equilibrium: is the equilibrium established between the unionized molecules and                            | (4) |
|      | the <b>ions</b> in a solution.                                                                                   |     |
|      | b) Give a point of difference between <b>lewis acid</b> and <b>lewis base</b> .                                  |     |
|      | lewis acid :Substances which lack electrons or are electron deficient, eg BF <sub>3</sub> ,AlCl <sub>3</sub> etc |     |
|      | A Lewis acid is therefore an electron-pair acceptor.                                                             |     |
|      | lewis base : Substances which are electrons rich for e.g OH <sup>-</sup> ,NH <sub>3</sub> , H <sub>2</sub> O etc |     |
|      | A Lewis base is therefore an electron-pair donor.                                                                |     |
|      | c) $I_2(g) + H_2(g) \rightleftharpoons 2HI(g)$                                                                   |     |
|      | For the following reaction, $Kc = 57.0$ , at 500 K. predict the extent of the reaction.                          |     |
|      | The reactants and the products are <b>almost in an equilibrium</b>                                               |     |
|      | d) Write the formula for the ionic product of water.                                                             |     |
|      | Ionic product of water: $\mathbf{Kw} = [\mathbf{H}^+][^{-}\mathbf{OH}]$                                          |     |
| Q.27 | Write the chemical equation for each of the following:                                                           | (4) |
|      | a) Nitration of benzene                                                                                          |     |
|      |                                                                                                                  |     |
|      |                                                                                                                  |     |
|      | H <sub>2</sub> SO <sub>4</sub>                                                                                   |     |
|      | Benzene Nitrobenzene                                                                                             |     |
|      | b) Decarboxylation of sodium acetate                                                                             |     |
|      | $CH_3COONa + NaOH \xrightarrow{\Delta} CH_4 + Na_2CO_3$                                                          |     |
|      | Sodium acetate Sodium Methane Sodium<br>Hydroxide carbonate                                                      |     |
|      | c) Aromatisation of n-hexane                                                                                     |     |
|      | CH <sub>3</sub>                                                                                                  |     |
|      | H <sub>2</sub> C CH <sub>3</sub> CF O (AL O                                                                      |     |
|      | $\left  \begin{array}{c} Cr_2O_3/Al_2O_3 \\ \hline 600^{\circ}C/15 \text{ atm} \end{array} \right  + 4H_2$       |     |
|      | H <sub>2</sub> C CH <sub>2</sub> CH <sub>2</sub> Benzene                                                         |     |
|      | n-Hexane                                                                                                         |     |
|      |                                                                                                                  |     |

