Std-XI science

 Unit 2: STRUCTURE OFATOM
Vijaykumar N. Nazare

Grade I Teacher in Chemistry (Senior Scale)
vnn001@ chowgules.ac.in

QUANTUM MECHANICAL MODEL OFTHEATOM

- In view of the shortcoming of the Bohr's model, attempts were made to develop a more suitable and general model for atoms.
- Two important developments which contributed significantly in the formulation of such a model were :
I. Dual behaviour of matter,

2. Heisenberg uncertainty principle.

Dual behaviour of matter

- The French physicist, de Broglie in 1924 proposed that matter, like radiation, should also exhibit dual behaviour i.e., both particle
- and wavelike properties.
- This means that just as the photon has momentum as well as wavelength, electrons should also have momentum as well as wavelength, de Broglie,

Dual behaviour of matter

- from this analogy, gave the following relation between wavelength (I) and momentum (p) of a material particle.

- where m is the mass of the particle, v its velocity and p its momentum.

Problem

- What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of 10 $\mathrm{m} \mathrm{s}^{-1}$?

Solution

- According to de Brogile equation

$$
\begin{aligned}
& \lambda=\frac{h}{\operatorname{riv}}-\frac{\left(6.266 \times 10^{-34} \mathrm{Js}\right)}{(0.1 \mathrm{~kg})\left(10 \mathrm{~ms}^{-1}\right)} \\
& =6.626 \times 10^{-34} \mathrm{~m}\left(\mathrm{~J}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)
\end{aligned}
$$

Problem

- The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$. If its K.E. is $3.0 \times 10^{-25} \mathrm{~J}$, calculate its wavelength.

Solution

- Since K. E. = $1 / 2 \mathrm{mv2}$
?!?
Ans: $=8967 \times 10^{-10} \mathrm{~m}=896.7 \mathrm{~nm}$

Heisenberg's Uncertainty Principle

- Werner Heisenberg a German physicist in 1927, stated uncertainty principle which is the consequence of dual behaviour of matter and radiation.
- It states that it is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron.

Heisenberg's uncertainty principle

- Electrons are difficult to visualize. As
a simplification we will picture them as tiny wave/particles around a nucleus. W
The location of electrons is described by: $\mathrm{n}, \mathrm{I}, \mathrm{m}$, $\mathrm{n}=$ size, $I=$ shape, $\mathrm{m}_{1}=$ orientation
- Heisenberg showed it is impossible to know both the position and velocity of an electron.
- Think of measuring spec

Silo

W
Fast

Heisenberg's Uncertainty Principle

- Mathematically, it can be given as in equation

$$
\Delta x \times \Delta p_{x} \geq \frac{h}{4 \pi}
$$

$$
\text { or } \quad \Delta x \times \Delta\left(m v_{\mathrm{x}}\right) \geq \frac{\mathrm{h}}{4 \pi}
$$

$$
\text { or } \Delta x \times \Delta v_{x} \geq \frac{h}{4 \pi m}
$$

where Δ_{x} is the uncertainty in position and $\Delta p_{x}\left(\right.$ or $\left.\Delta V_{x}\right)$ is the uncertainty in momentum (or velocity) of the particle.

Reasons for the Failure of the Bohr Model

- In Bohr model, an electron is regarded as a charged particle moving in well defined circular orbits about the nucleus.
- The wave character of the electron is not considered in Bohr model.
- Bohr model of the hydrogen atom, not only ignores dual behaviour of matter but also contradicts Heisenberg uncertainty principle.

Quantum mechanics

- The branch of science that takes into account this dual behaviour of matter is called quantum mechanics.
- Quantum mechanics is a theoretical science that deals with the study of the motions of the microscopic objects that have both observable wave like and particle like properties.

Difference Between Orbit \& Orbital

Orbit

Orbital

Difference Between Orbit \& Orbital

- Well defined circular path
- It represents planar motion
- Maximum no of electrons in an orbit $=2 n^{2}$. where $n=$ no of Orbit.
- Non directional.
- Concept of well defined orbit is against Heisenbergs principle

Orbital

- It is region of space around the nucleus where the electron is most likely to be found.
- it represents 3D motion of an electron
- It cannot accommodate more than 2 electrons.
- Directional.
- In agreement with Heisenbergs principle

Orbital's and Quantum Numbers

- A large number of orbitals are possible in an atom.
- Qualitatively these orbitals can be distinguished by their size, shape and orientation.
- Atomic orbitals are precisely distinguished by what are known as quantum numbers.
- Each orbital is designated by three quantum numbers

Quantum numbers

I. The principal quantum number ' n '
3. Magnetic orbital quantum number. ${ }^{\prime} \mathrm{m}^{\prime}$
2. Azimuthal quantum number. 'l' 'It is also known as orbital angular momentum or subsidiary quantum number.
4. spin quantum number $\left(\mathrm{m}_{\mathrm{s}}\right)$

The principal quantum number ' n '

- The principal quantum number determines the size and to large extent the energy of the orbital.
- For hydrogen atom and hydrogen like species ($\mathrm{He}^{+}, \mathrm{Li}^{2+}$.... etc.) energy and size of the orbital depends only on ' n '.

The principal quantum number ' n '

- The principal quantum number also identifies the shell.
- With the increase in the value of ' n ', the number of allowed orbital increases and are given by ' n '
- All the orbitals of a given value of ' n ' constitute a single shell of atom and are represented by the following letters
- n = I 234
- Shell = K L M N

Azimuthal quantum number (I)

- It defines the three dimensional shape of the orbital.
- For a given value of n, I can have values ranging from 0 to ($n-1$), that is, for a given value of n, the possible value of 1 are
- I = 0, I, 2,(n-I)

1.For example, when $\mathrm{n}=1$, value of I is

$$
\text { only } 0 .
$$

2. For $n=2$, the possible value of I can be

0 and 1.
3. For $n=3$, the possible 1 values are

$$
0,1 \text { and } 2 .
$$

\square Each shell consists of one or more subshells or sub-levels.

\square The number of subshells in a principal shell is equal to the value of n.
\square For example in the first shell $(\mathrm{n}=1)$ there is only one sub-shell which corresponds to $l=0$.
\square There are two sub-shells $(I=0,1)$ in the second shell $(\mathrm{n}=2)$,
\square three $(\mathrm{l}=0,1,2)$ in third shell $(\mathrm{n}=3)$ and so on.
\square Each sub-shell is assigned an azimuthal quantum number

Sub-shells corresponding to different values of I are represented by the following symbols.

Value for 1:01234 notation for I : s p d f g h---------

n	\boldsymbol{l}	Subshell notation
1	0	$1 s$
2	0	$2 s$
2	1	$2 p$
3	0	$3 s$
3	1	$3 p$
3	2	$3 d$
4	0	$4 s$
4	1	$4 p$
4	2	$4 d$
4	3	$4 f$

Magnetic orbital quantum number. 'm’

-Gives information about the spatial orientation of the orbital with respect to standard set of co-ordinate axis.

DFor any sub-shell (defined by 'f' value) $2 \mid+1$ values of m_{l} are possible and these values are given by :

$$
m_{l}=-I,-(I-1),-(I-2) \ldots 0,1 \ldots(I-2),(I-1), I
$$

Thus for $I=0$, the only permitted value of m_{1} $=0,[2(0)+1=1$, one s orbital $]$.

For $I=1, m_{1}$ can be $-1,0$ and $+1[2(1)+1=3$, three p orbitals].

$$
\begin{aligned}
& \text { For I }=2, m_{1}=-2,-1,0,+1 \text { and }+2, \\
& {[2(2)+1=5 \text {, five } d \text { orbitals }] .}
\end{aligned}
$$

It should be noted that the values of m_{1} are derived from I and that the value of I are derived from n.

Each orbital in an atom, therefore, is defined by a set of values for n, I and m.

An orbital described by the quantum numbers
$n=2, l=1, m_{l}=0$ is an orbital in the p subshell of the second shell.

The following chart gives the relation between the sub-shell and the number of orbitals associated with it.

Problem

- What is the total number of orbitals associated with the principal quantum number $\mathrm{n}=3$?

Solution

- For $n=3$, the possible values of I are $0, I$ and 2 .Thus there is one 3 s orbital
- ($\mathrm{n}=3, \mathrm{I}=0$ and $\mathrm{ml}=0$); there are three 3 p orbitals ($\mathrm{n}=$ $3, \mathrm{I}=\mathrm{I}$ and $\mathrm{ml}=-\mathrm{I}, 0,+\mathrm{l}$); there are five 3d orbitals (n
$=3, \mathrm{l}=2$ and $\mathrm{ml}=-2,-1,0,+1+,+2$).
- Therefore, the total number of orbitals is $1+3+5=9$
- The same value can also be obtained by using the relation; number of orbitals
$-=n^{2}$, i.e. $3^{2}=9$.

Problem

।. Using s, p, d, f notations, describe the orbital with the following quantum numbers

$$
\begin{aligned}
& \text { (a) } n=2, I=I \text {, (b) } n=4, I=0, \text { (c) } n=5, I=3 \text {, (d) } n \\
& =3, I=2
\end{aligned}
$$

Solution

n

a) $\mathrm{n}=2, \mathrm{l}=\mathrm{l}$
b) $n=4, l=0$
c) $n=5, l=3$
d) $n=3, l=2$
orbital

$2 p$
$4 s$
$5 f$
$3 d$

s-Shells and Subshells

$$
\text { For } n=1, I=0 \text { and } m_{l}=0: \quad \Psi_{1,0,0}
$$

There is only one subshell and that subshell has a single orbital
(m, has a single value ---> 1 orbital)
This subshell is labeled s ("ess") and we call this orbital 1s
Each shell has 1 orbital labeled s.
It is SPHERICAL in shape.
The symbol, " 1 s " is the label of a wave function, $\Psi_{1 \mathrm{~s}}$. It means, $n=1, I=0, m_{l}=0$.

Shape of 1s Orbital

Radial Distribution Functions Take Into Account Area of Thin Spherical Shell as You Move Outward from Nucleus

B

$1 s, 2 s, 3 s$ orbitals

Typical p orbital

p Orbitals

$$
\text { For } n=2, \quad I=0 \text { and } 1
$$

There are 2 types of orbitals - 2 subshells
For I $=0 \mathrm{~m}_{1}=0: \boldsymbol{\Psi}_{2,0,0}$
this is a s subshell
For $\mathrm{I}=1 \quad \mathrm{~m}_{1}=-1,0,+1$
this is a p subshell with 3 orbitals:
$\Psi_{2,1,-1}, \Psi_{2,1,0}$, and $\Psi_{2,1,1}$
planar node

When I = 1 , there is a PLANAR NODE through the nucleus.
How does the electron get from left to right without ever being seen in the node?

Shape of 2p Orbital

d Orbitals

For $n=3$, what are the values of I ?

$$
I=0,1,2
$$

and so there are 3 subshells in the shell.
For $I=0, m_{l}=0$
\rightarrow s subshell with single orbital

$$
\begin{aligned}
& \text { For } \mathrm{l}=1, \mathrm{~m}_{\mathrm{i}}=-1,0,+1 \\
& \rightarrow \quad \mathrm{p} \text { subshell with } 3 \text { orbitals }
\end{aligned}
$$

For $\mathrm{I}=2, \mathrm{~m}_{1}=-2,-1,0,+1,+2$ \rightarrow d subshell with 5 orbitals

d Orbitals

* The d orbitals are those for which $I=2$.

There are five d orbitals in each d subshell.
Four are "four-leaf clovers"; the fifth looks like a p orbital with the addition of a ring around the centre

d Orbitals

* The d orbitals are those for which $\mathrm{I}=2$.

There are five d orbitals in each d subshell.
Four are "four-leaf clovers"; the fifth looks like a p orbital with the addition of a ring around the centre

Representation of the 3d orbitals

(a)

(b)

Shape of 3d Orbitals

$d_{x^{2}-y^{2}}$

$d_{x z}$

d_{yz}

d Orbitals

> typical d orbital
s orbitals have no planar node ($\mathrm{l}=0$) and so are spherical.
p orbitals have $\mathrm{I}=1$, and
 have 1 planar node, and so are "dumbbell" shaped.
d orbitals (with I = 2) have 2 planar nodes

> IN GENERAL the number of NODES
> = value of angular quantum number (I)

Nodal Planes in Orbitals

Representation of the $4 f$ orbitals

Table 7.1 A Summary of Quantum Numbers \& Orbitals

n	I	$m \prime$	$\# \&$ Type of Orbitals
1	0	0	$1-1 s$ orbital
2	0	0	$1-2 s$ orbital
	1	$+1,0,-1$	$3-2 p$ orbitals
3	0	0	$1-3 s$ orbital
	1	$+1,0,-1$	$5-3 d$ orbitals
	2	$+2,+1,0,-1,-2$	$1-4 s$ orbital
			$3-4 p$ orbitals
4	0	0	$5-4 d$ orbitals
	1	$+1,0,-1$	$7-4 f$ orbitals
	2	$+2,+1,0,-1,-2$	
	3	$+3,+2,+1,0,-1,-2,-3$	

Filling of Orbitals in Atom

- The filling of electrons into the orbitals of different atoms takes place according to the
- aufbau principle which is based on the
- Pauli's exclusion principle,
- the Hund's rule of maximum multiplicity and the
- relative energies of the orbitals.

Aufbau Principle

- The principle states :
- In the ground state of the atoms, the orbitals are filled in order of their increasing energies.
- In other words, electrons first occupy the lowest energy orbital available to them and enter into higher energy orbitals only after the lower energy orbitals are filled.

Aufbau Principle

- The order in which the energies of the orbitals increase and hence the order in which the orbitals are filled is as follows:
- Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, $4 f, 5 d, 6 p, 7 s . .$.
c3p12swf

Order of filling of orbitals

Order of filling of orbitals

Pauli Exclusion Principle

- According to this principle :
- No two electrons in an atom can have the same set of four quantum numbers.
- Pauli exclusion principle can also be stated as :"Only two electrons may exist in the same orbital and these electrons must have opposite spin."

Pauli Exclusion Principle

- Subshell Is comprises of one orbital and thus the maximum number of electrons present in Is subshell can be two, in p and d subshells, the maximum number of electrons can be 6 and 10 and so on.
- This can be summed up as:
- the maximum number of electrons in the shell with principal quantum number n is equal to $2 n^{2}$.

Hund's Rule of Maximum Multiplicity

- It states : pairing of electrons in the orbitals belonging to the same subshell (p, d or f) does not take place until each orbital belonging to that subshell has got one electron each i.e., it is singly occupied.
- Since there are three p, five d and seven f orbitals, therefore, the pairing of electrons will start in the p, d and f orbitals with the entry of 4th, 6th and 8th electron, respectively.

Hund's Rule of Maximum Multiplicity

- It has been observed that half filled and fully filled degenerate set of orbitals acquire extra stability due to their symmetry

n+| Rule

Energies of orbitals in one electron atoms

$$
\begin{aligned}
& 4 \mathrm{~s}-4 \mathrm{p}---4 \mathrm{~d}-----4 \mathrm{f}-----\infty \\
& 3 \mathrm{~s}-3 \mathrm{p}-\text { - }-3 \mathrm{~d}---- \text { - } \\
& 2 \mathrm{~s} \text { - } 2 \mathrm{p} \text { ——— } \\
& \text { For } 1 \text { electron atoms, energy of } \\
& \text { orbitals depends only on } n \text {. } \\
& 1 \mathrm{~s} \text { is the lowest energy, or ground } \\
& \text { state. } \\
& \text { Orbitals with the same energy are } \\
& \text { called degenerate. }
\end{aligned}
$$

Energies of orbitals in many electron atoms

Electronic Configuration of Atoms

Electronic Configuration of Atoms

Element	Atomic No	Electronic Configuration
\mathbf{H}	\mathbf{l}	
He	2	
$\mathbf{L i}$	3	
Be	4	
\mathbf{B}	5	
\mathbf{C}	6	
\mathbf{N}	7	

Electronic Configuration of Atoms

Element	$\begin{aligned} & \text { Atomic } \\ & \text { No } \end{aligned}$	Electronic Conifguration
H	-	$\mid s^{1}$
He	2	$1 s^{2}$
Li	3	$1 s^{2} 2 s^{1}$
Be	4	$1 s^{2} 2 s^{2}$
B	5	$1 s^{2} 2 s^{2} 2 p^{1}$
C	6	$1 s^{2} 2 s^{2} 2 p^{2}$
N	7	$1 s^{2} 2 s^{2} 2 p^{3}$

Electronic Configuration of Atoms

Element	Atomic No	Electronic Configuration
\mathbf{O}	$\mathbf{8}$	
\mathbf{F}	9	
$\mathbf{N e}$	$\mathbf{1 0}$	
$\mathbf{N a}$	$\mathbf{I I}$	
$\mathbf{M g}$	$\mathbf{1 2}$	
$\mathbf{A l}$	$\mathbf{1 3}$	
$\mathbf{S i}$	14	

Electronic Configuration of Atoms

Element Atomic Electronic ConfigurationNo
O $8 \quad l s^{2} 2 s^{2} 2 p^{4}$
F $\quad 9 \quad \mid s^{2} 2 s^{2} 2 p^{5}$
Ne $\quad 10 \quad \mid s^{2} 2 s^{2} 2 p^{6}$
$\mathrm{Na} \quad$ II $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ Or [Ne] 3s ${ }^{1}$
Mg $\quad 12 \quad$ Is $s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ Or $[\mathrm{Ne}] 3 s^{2}$
AI $\quad 13 \quad \mid s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
Si $\quad 14 \quad \mid s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$

The Aufbau Principle (C and N)

- Carbon ($\mathrm{Z}=6$)

1 s

2 s

2p

Hund's Rule: Lowest energy configuration is the one in which the maximum number of unpaired electrons are distributed among a set of degenerate orbitals.

- Nitrogen $(Z=7)$

$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$

The Aufbau Principle (O, F and Ne)

- Oxygen $(\mathrm{Z}=8)$

- Fluorine $\left(\begin{array}{l}1 \mathrm{~s} \\ Z\end{array}=9\right)^{2 s}$

$1 s^{2} 2 s^{2} 2 p^{4}$

1 s

$1 s^{2} 2 s^{2} 2 p^{5}$

- Neon ($\mathrm{Z}=10$)

$1 s^{2} 2 s^{2} 2 p^{6}$
full
- $\operatorname{Sodium}(Z=11)$

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
$[\mathrm{Ne}] 3 \mathrm{~s}^{1}$
3 s
- $\operatorname{Argon}(\mathrm{Z}=18)$

$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
-Why not 3d before 4s?

- 3 d is closer to the mucleus
- 4 s allows for closer approach; therefore, is energetically preferred.

Distance from the nucleus

- Elements Z=19 and Z= 20:

$$
\begin{aligned}
& Z=19, \text { Potassium: } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathrm{p}^{6} 4 s^{1}=[\operatorname{Ar}] 4 s^{1} \\
& Z=20, \text { Calcuim: } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2}=[\mathrm{Ar}] 4 s^{2}
\end{aligned}
$$

- Elements $\mathrm{Z}=21$ to $\mathrm{Z}=30$ have occupied d orbitals:
$\mathrm{Z}=21$, Scandium: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$
$\mathrm{Z}=24$, Chromium: $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5} \quad$ exception
$Z=30$, Zinc: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}=[\mathrm{Ar}] 4 s^{2} 3 d^{10}$

Elements $Z=21$ to $Z=30$ have occupied d orbitals:

$Z=21$, Scandium: $18^{222 s 22 p} 63 s^{2} 3 p^{64} 48^{2301}=[\mathrm{Ar}] 48^{2} 30^{1}$
$Z=24$, Chromilum: $[A \mathrm{Ar}] 453 \mathrm{~S}^{3}{ }^{5}$ exception
$Z=29$, Copper: $[A r] 4 s^{13} 31^{10} \quad$ exception
$Z=30$, Zinc: $1822 s^{22 p} p^{638} 23 p^{6} 4 s^{2} 3 d^{10}=[\mathrm{Ar}] 4833 d^{10}$

Thank you

- Vijaykumar N. Nazare.
- Grade I Teacher Senior Scale
- vnn001@ chowgules.ac.in

