Chemistry-Sill-kI-Science

Nature of Matter

```
All matter originate and exist only by virtue
of a force... We must assume behind this force
the existence of a conscious and intelligent
mind. This mind is the matrix of all matter.
--Max Planck
```

```
Time and space and gravitation have no separate
existence from matter.
```

--Albert Einstein

- Matter is anything that has mass and occupies space.
- Three physical states of matter

- Characteristics of solid
- Definite volume
- Definite shape
- Characteristics of liquid
- Definite volume
- Indefinite shape

- Characteristics of gas
- Indefinite volume
- Indefinite shape
- Arrangement of particles in the three states

- Inter-conversion between the three states
- Classification of matter in macroscopic level

- Mixtures
- Components are present in any ratio.
- Homogeneous mixture - Uniform composition throughout the mixture.
- Heterogeneous mixture - Non-uniform composition throughout the mixture.
- Components can be separated by physical methods such as hand picking, filtration, crystallization, distillation, etc.

- Pure substances
- Fixed composition
- Constituents cannot be separated by simple physical methods.
- Elements contain only one type of particles - atoms (example $\mathrm{Na}, \mathrm{K}, \mathrm{Cu}$, C, Ag) or molecules [Example: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}$]
- Compounds are formed by the combination of two or more atoms of different elements. [Example: water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$]
- Constituents of compounds cannot be separated by physical methods; they can be separated by chemical methods only.

Properties of Matter

- Physical properties
- Properties which can be measured or observed without changing the identity or composition of the substance
- Example - Colour, odour, melting point, boiling point, density, etc.

- Chemical Properties

- Properties in which chemical change in the substance takes place
- Examples - Characteristic reactions of different substances such as acidity, basicity, combustibility, reactions with other elements and compounds
- Quantitative properties can be of the following types:

Laws of Chemical Combination

- Law of Conservation of Mass:

Matter can be neither created nor destroyed.

- Law of Definite Proportions:

A given compound always contains exactly the same proportion of elements by weight.

- Law of Multiple Proportions:

If two elements can combine to form more than one compound, then the masses of one element that combines with a fixed mass of the other element are in the ratio of small whole numbers.

- Gay Lussac's Law of Gaseous Volumes:

When gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume, provided all the gases are at the same temperature and pressure.

- Avogadro Law:

Equal volumes of gases at the same temperature and pressure should contain equal number of molecules.

Dalton's Atomic Theory

- Postulates:
- All matter is made of very tiny indivisible particles called atoms.
- All the atoms of a given element are identical in mass and chemical properties whereas those of different elements have different masses and chemical properties.
- Atoms of different elements combine in a fixed whole number ratio to form compounds.
- Chemical reactions involve reorganization of atoms. Atoms are neither created nor destroyed in a chemical reaction.
- The laws of chemical combination could be explained by Dalton's atomic theory.

Atomic and Molecular Masses

- Atomic mass:
- The mass of an atom
- One atomic mass unit $(1 \mathrm{amu})=$ Mass equal to one-twelfth of the mass of one carbon-12 atom
$1 \mathrm{amu}=1.66056 \times 10^{-24} \mathrm{~g}$
- Nowadays, 'u' (unified mass) has replaced 'amu'.
- Average atomic mass $=\sum$ (Mass of isotope \times Relative abundance $)$

Example

The relative abundance of two isotopes of copper, having atomic masses 62.93 u and 64.94 u , are 69.09% and 30.91% respectively. Calculate the average atomic mass of copper.

Solution:

Average atomic mass of copper $=\left(62.93 \times \frac{69.09}{100}\right)+\left(64.94 \times \frac{30.91}{100}\right)$
$=63.55 \mathrm{u}$

- Molecular Mass:

- Sum of the atomic masses of all the elements present in a molecule
- Example - Molecular mass of $\mathrm{CO}_{2}=1 \times$ Atomic mass of carbon $+2 \times$ Atomic mass of oxygen
$=(1 \times 12.011 \mathrm{u})+(2 \times 16.00 \mathrm{u})$
$=12.011 u+32.00 u$
$=44.011 \mathrm{u}$

- Formula Mass:
- Sum of the masses of all the atoms present in a formula unit of a compound
- Used for compounds whose constituent particles are ions
- Example - Formula mass of sodium chloride (NaCl)
$=$ Atomic mass of sodium + Atomic mass of chlorine
$=23.0 \mathrm{u}+35.5 \mathrm{u}=>58.5 \mathrm{u}$

Mole Concept and Molar Masses

- 1 mole of any substance can be defined as:
- Amount of a substance that contains as many particles (atoms, molecules or ions) as there are atoms in 12 g of the ${ }^{12} \mathrm{C}$ isotope
- Avogadro number or Avogadro constant $\left(\mathrm{N}_{\mathrm{A}}\right)$; equal to 6.022×10^{23} particles
- Example -1 mole of oxygen atoms $=6.022 \times 10^{23}$ atoms

1 mole of carbon dioxide molecules $=6.022 \times 10^{23}$ molecules

1 mole of sodium chloride $=6.022 \times 10^{23}$ formula units of sodium chloride

Molar mass of a substance can be defined as:

- Mass of one mole of a substance in grams
- Numerically equal to atomic/molecular/formula mass in u.
- Example - Molar mass of $\mathrm{CO}_{2}=44.011 \mathrm{~g} \mathrm{~mol}^{-1}$

Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$

Examples

1. What number of moles contains 3.011×10^{23} molecules of glucose?

Solution:

1 mole of glucose is equivalent to 6.022×10^{23} molecules of glucose.
Hence, 3.011×10^{23} molecules of glucose will be present in
$=\frac{1 \times 3.011 \times 10^{23}}{6.022 \times 10^{23}} \mathrm{~mol}=0.5 \mathrm{~mol}($ of glucose $)$
Thus, 0.5 mole of glucose contains 3.011×10^{23} molecules of glucose.
2. What is the mass of a mole of fluorine molecule?

Solution:

1 mole of fluorine molecule contains 6.022×10^{23} molecules and weighs 38 g .
Therefore, mass of a fluorine molecule $=\frac{38}{6.022 \times 10^{23}} \mathrm{~g}$

$$
=6.31 \times 10^{-23} \mathrm{~g}
$$

Percentage Composition

Mass percent of an element $=\frac{\text { Mass of that element in the compound } \times 100 \%}{\text { Molar mass of the compound }}$

Example

What is the mass percent of oxygen in potassium nitrate? (Atomic mass of $\mathrm{K}=39.10 \mathrm{u}$, atomic mass of $\mathrm{N}=14.007 \mathrm{u}$, atomic mass of $\mathrm{O}=16.00 \mathrm{u}$)

Solution:

Atomic mass of $\mathrm{K}=39.10 \mathrm{u}$ (Given)

Atomic mass of $\mathrm{N}=14.007 \mathrm{u}$ (Given)

Atomic mass of $\mathrm{O}=16.00 \mathrm{u}$ (Given)
Therefore, molar mass of potassium nitrate $\left(\mathrm{KNO}_{3}\right)$
$=39.10+14.007+3(16.00)$

- Empirical formula and molecular formula:

Empirical formula	Molecular formula
Represents the simplest whole number ratio of various atoms present in a compound	Represents the exact number of different types of atoms present in a molecule of a compound

- Empirical formula is determined if mass \% of various elements are known.
- Molecular formula is determined from empirical formula if molar mass is known.

Example

A compound contains 92.26% carbon and 7.74% hydrogen. If the molar mass of the compound is $26.038 \mathrm{~g} \mathrm{~mol}^{-1}$, then what are its empirical and molecular formulae?

Solution:

Mass percent of carbon $(\mathrm{C})=92.26 \%$ (Given)

Mass percent of hydrogen $(\mathrm{H})=7.74 \%$ (Given)
Number of moles of carbon present in the compound $=\frac{92.26}{12.011}$

$=7.68 \mathrm{~mol}$
Number of moles of hydrogen present in the compound $=\frac{7.74}{1.008}$
$=7.68 \mathrm{~mol}$

Thus, in the given compound, carbon and hydrogen are present in the ratio $\mathrm{C}: \mathrm{H}=$ $7.68: 7.68$
$=1: 1$

Therefore, the empirical formula of the compound is CH .
Empirical formula mass of $\mathrm{CH}=(12.011+1.008) \mathrm{g}$
$=13.019 \mathrm{~g}$
Molar mass of the compound $=26.038 \mathrm{~g}$ (Given)
Molar Mass
Therefore, $n=$ Empirical formula mass
$=\frac{26.038 \mathrm{~g}}{13.019 \mathrm{~g}}$
$=2$ Hence, the molecular mass of the compound is $(\mathrm{CH})_{n}$, i.e., $(\mathrm{CH})_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{2}$.

Interconversion among number of moles, mass and number of molecules

Stoichiometric Calculations in Balanced Chemical Equations

- An example of a balanced chemical equation is given below.

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

From the above balanced chemical equation, the following information is obtained:

- One mole of $\mathrm{C}_{3} \mathrm{H}_{8(g)}$ reacts with five moles of $\mathrm{O}_{2(g)}$ to give three moles of $\mathrm{CO}_{2(g)}$ and four moles of $\mathrm{H}_{2} \mathrm{O}_{(1)}$.
- One molecule of $\mathrm{C}_{3} \mathrm{H}_{8(g)}$ reacts with five molecules of $\mathrm{O}_{2(g)}$ to give three molecules of $\mathrm{CO}_{2(g)}$ and four molecules of $\mathrm{H}_{2} \mathrm{O}_{(1)}$.
- 44 g of $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$ reacts with $(5 \times 32=160) \mathrm{g}$ of $\mathrm{O}_{2(\mathrm{~g})}$ to give $(3 \times 44=132) \mathrm{g}$ of CO_{2} and $(4 \times 18=72) \mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$.
- $22.4 \mathrm{~L}^{\text {of }} \mathrm{C}_{3} \mathrm{H}_{8(g)}$ reacts with $(5 \times 22.4) \mathrm{L}^{\text {of }} \mathrm{O}_{2(g)}$ to give $(3 \times 22.4) \mathrm{L}$ of O_{2} and $(4 \times$ 22.4) L of $\mathrm{H}_{2} \mathrm{O}$.

Example

Nitric acid $\left(\mathrm{HNO}_{3}\right)$ is commercially manufactured by reacting nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ with water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. The balanced chemical equation is represented as follows:
$3 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NO}_{(\mathrm{g})}$

Calculate the mass of NO_{2} required for producing 5 moles of HNO_{3}.

Solution:

According to the given balanced chemical equation, 3 moles of NO_{2} will produce 2 moles of HNO_{3}.

Therefore, 2 moles of HNO_{3} require 3 moles of NO_{2}.
Hence, 5 moles of HNO_{3} require $=\frac{3}{2} \times 5$ moles of NO_{2}
$=7.5$ moles of NO_{2}

Molar mass of $\mathrm{NO}_{2}=(14+2 \times 16) \mathrm{g} \mathrm{mol}^{-1}$
$=46 \mathrm{~g} \mathrm{~mol}^{-1}$
Thus, required mass of $\mathrm{NO}_{2}=(7.5 \times 46) \mathrm{g} \mathrm{mol}^{-1}$
$=345 \mathrm{~g} \mathrm{~mol}^{-1}$

- Limiting reagent or limiting reactant:
- Reactant which gets completely consumed when a reaction goes to completion
- So called because its concentration limits the amount of the product formed

Example

Lead nitrate reacts with sodium iodide to give lead iodide and sodium nitrate in the following manner:

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaI} \longrightarrow \mathrm{PbI}_{2}+2 \mathrm{NaNO}_{3}$
What amount of sodium nitrate is obtained when 30 g of lead nitrate reacts with 30 g of sodium iodide?

Solution:

Molar mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=207+[\{14+(16 \times 3)\} \times 2]$
$=331 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of $\mathrm{NaI}=(23+127)=150 \mathrm{~g} \mathrm{~mol}^{-1}$

According to the given equation, 1 mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 2 moles of NaI , i.e.,

331 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with 300 g of NaI to give PbI_{2} and NaNO_{3}
Thus, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is the limiting reagent.
Therefore, 30 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=\frac{30}{331}=0.09$ mole
According to the equation, 0.09 mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will give (2×0.09) mole of $\mathrm{NaNO}_{3}=0.18$ mole of NaNO_{3}.

- Reactions in solutions:

Ways for expressing the concentration of a solution -

- Mass per cent or weight per cent (w/w\%)

Mass per cent $=\frac{\text { Mass of solute }}{\text { Mass of solution }} \times 100 \%$

Example

4.4 g of oxalic acid is dissolved in 200 mL of a solution. What is the mass per cent of oxalic acid in the solution? (Density of the solution $=1.1 \mathrm{~g} \mathrm{~mL}^{-1}$)

Solution:

Density of the solution $=1.1 \mathrm{~g} \mathrm{~mL}^{-1}$
So the mass of the solution $=(200 \mathrm{~mL}) \times\left(1.1 \mathrm{~g} \mathrm{~mL}^{-1}\right)$
$=220 \mathrm{~g}$
Mass of oxalic acid $=4.4 \mathrm{~g}$

Therefore, mass per cent of oxalic acid in the solution
$=\frac{\text { Mass of oxalic acid }}{\text { Mass of the solution }} \times 100 \%$
$=\frac{4.4 \mathrm{~g}}{220 \mathrm{~g}} \times 100 \%$
$=2 \%$

- Mole fraction:

If a substance 'A' dissolves in a substance ' B ', then mole fraction of
$A=\frac{\text { Number of moles of A }}{\text { Number of moles of the solution }}$
$=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}$

Mole fraction of B $=\frac{\text { Number of moles of B }}{\text { Number of moles of the solution }}$
$=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}$
n_{A} - Number of moles of A \& n_{B} - Number of moles of B

Example

A solution is prepared by dissolving 45 g of a substance \mathbf{X} (molar mass $=25 \mathrm{~g}$ mol^{-1}) in 235 g of a substance \mathbf{Y} (molar mass $\left.=18 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. Calculate the mole fractions of \mathbf{X} and \mathbf{Y}.

Solution:

Moles of $X, n_{x}=\frac{45}{25}$
$=1.8 \mathrm{~mol}$
Moles of $Y, n_{Y}=\frac{235}{18}$
$=13.06 \mathrm{~mol}$

Therefore, mole fraction of X, $n_{\mathrm{x}}=\frac{1.8}{1.8+13.06}$
$=\frac{1.8}{14.86}$
$=0.121$
And, mole fraction of $\mathrm{Y}, n_{\mathrm{Y}}=1-n_{\mathrm{X}}$
$=1-0.121$
$=0.879$

- Molarity:

Number of moles of a solute in 1 L of a solution
Molarity $(M)=\frac{\text { Number of moles of solute }}{\text { Volume of solution in litres }}$

Molarity equation:
$M_{1} V_{1}=M_{2} V_{2}$
$M_{1}=$ Molarity of a solution when its volume is V_{1}
$M_{2}=$ Molarity of the same solution when its volume is V_{2}

Examples

1. 10 g of HCl is dissolved in enough water to form 500 mL of the solution.

Calculate the molarity of the solution.

Solution:

Molar mass of $\mathrm{HCl}=36.5 \mathrm{~g} \mathrm{~mol}^{-1}$
So the moles of $\mathrm{HCl}=\frac{10}{36.5} \mathrm{~mol}$
$=0.274 \mathrm{~mol}$

Volume of the solution $=500 \mathrm{~mL}=0.5 \mathrm{~L}$
Number of moles of HCl
Therefore, molarity $=$ Volume of solution in litres
$=\frac{0.274 \mathrm{~mol}}{0.5 \mathrm{~L}}$
$=0.548 \mathrm{M}$
2. Commercially available concentrated HCl contains $38 \% \mathrm{HCl}$ by mass. What volume of concentrated HCl is required to make 2.5 L of 0.2 M HCl ? (Density of the solution $=1.19 \mathrm{~g} \mathrm{~mL}^{-1}$)

Solution:

$38 \% \mathrm{HCl}$ by mass means that 38 g of HCl is present in 100 g of the solution.

Moles of $\mathrm{HCl}=\frac{38}{36.5}=1.04 \mathrm{~mol}$
Volume of the solution $=\frac{\text { Mass }}{\text { Density }}$
$=\frac{100 \mathrm{~g}}{1.19 \mathrm{~g} \mathrm{~mL}^{-1}}$
$=84.03 \mathrm{~mL}$
$=0.08403 \mathrm{~L}$

Therefore, molarity of the solution $=\frac{1.04}{0.08403 \mathrm{~L}}$
$=12.38 \mathrm{M}$

According to molarity equation,
$M_{1} V_{1}=M_{2} V_{2}$

Here,
$M_{1}=12.38 \mathrm{M}$
$M_{2}=0.2 \mathrm{M}$
$V_{2}=2.5 \mathrm{~L}$
Now, $M_{1} V_{1}=M_{2} V_{2}$
$\Rightarrow V_{1}=\frac{M_{2} V_{2}}{M_{1}}$

$$
=\frac{0.2 \times 2.5}{12.38}
$$

$=0.0404 \mathrm{~L}$ (approx)

Hence, required volume of $\mathrm{HCl}=0.0404 \mathrm{~L}$

- Molality:

Number of moles of solute present in 1 kg of solvent
Molality $(\mathrm{m})=\frac{\text { Number of moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}$

Example

What is the molality of a solution of glucose in water, which is labelled as 15% (w/w)?

Solution:

$15 \%(\mathrm{w} / \mathrm{w})$ solution means that 15 g of glucose is present in 100 g of the solution, i.e., $(100-15) \mathrm{g}=85 \mathrm{~g}$ of water $=0.085 \mathrm{~kg}$ of water

Moles of glucose $=\frac{15 \mathrm{~g}}{180 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=0.083 \mathrm{~mol}$
Therefore, molality of the solution $=\frac{0.083 \mathrm{~mol}}{0.085 \mathrm{~kg}}$
$=0.976 \mathrm{~m}$

