Std-XI science Unit I:

Some Basic Concepts of Chemistry

Vijaykumar N. Nazare

Grade ITeacher in Chemistry (Senior Scale)

vnn001@ chowgules.ac.in

1.1 IMPORTANCE OF CHEMISTRY

- Chemistry is the branch of science
- Chemistry plays a central role in science
- -intertwined with other branches of science etc.
- -plays an important role in daily life.

Chemistry in everyday life

 COOKING

I. 2 NATURE OF MATTER

- Matter
- Solids Liquids \& Gases

Fig. 1.1 Arrangement of particles in solid, liquid and gaseous state

Classification of matter

Fig. 1.2 Classification of matter

Law of Conservation of Mass

It states that matter can neither be

 created nor destroyed.

Law of Definite Proportions

- This law was given by, a French chemist, Joseph Proust. He stated that a given compound always contains exactly the same proportion of elements by weight.

Joseph Proust
(1754-1826) Some basic concepts of Chemistry

Law of Multiple Proportions

- This law was proposed by Dalton in 1803. According to this law, if two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

Gay Lussac's Law of Gaseous Volumes

- This law was given by Gay Lussac in I808. He observed that when gases combine or are produced in a chemical reaction they do so in a simple ratio by volume provided all gases are at same temperature and pressure.

Gay Lussac's Law of Gaseous Volumes

Fig. 1.9 Two volumes of hydrogen react with One volume of oxygen to give Two volumes of water vapour

Avogadro Law

In I8II,Avogadro proposed that equal volumes of gases at the same temperature and pressure shouid contain equal number of molecules

DALTON'S ATOMIC THEORY

John Dalton
(1776-1884)

Dalton's Atomic Theory (postulates)

All elements are composed of tiny indivisible particles called atoms Atoms of the same element are identical. Atoms of any one element are different from those of any other element.

Atoms of different elements combine in simple whole-number ratios to form chemical compounds
In chemical reactions, atoms are combined, separated, or rearranged - but never changed into atoms of another element.

Atomic Mass

$1 \mathrm{amu}=1.66056 \times 10^{-24} \mathrm{~g}$

Mass of an atom of hydrogen

$$
=1.673610^{-24} \mathrm{~g}
$$

Thus, in terms of amu, the mass

$$
\begin{aligned}
\text { of hydrogen atom } & =\frac{1.6736 \times 10^{-24} \mathrm{~g}}{1.66056 \times 10^{-24} \mathrm{~g}} \\
& =1.0078 \mathrm{amu} \\
& =1.0080 \mathrm{amu}
\end{aligned}
$$

Today, 'amu' has been replaced by 'u' which is known as unified mass.

Average Atomic Mass

Many naturally occurring elements exist as more than one isotope. When we take into account the existence of these isotopes and their relative abundance (per cent occurrence), the average atomic mass of that element can be computed

Molecular Mass

- Molecular mass is the sum of atomic masses of the elements present in a molecule.
- It is obtained by multiplying the atomic mass of each element by the number of its atoms and adding them together

Formula Mass

formula mass of NaCl

- It may be noted that in sodium chloride, one $\mathrm{Na}+$ is surrounded by six Cl -and viceversa.
- The formula such as NaCl is used to calculate the formula mass instead of molecular mass as in the solid state sodium chloride does not exist as a single entity.
- Thus, formula mass of sodium chloride $=$
- atomic mass of sodium + atomic mass of Chlorine $=23.0 \mathrm{u}+35.5 \mathrm{u}=58.5 \mathrm{u}$

One mole

One mole is the amount of a substance that contains as many particles or entities as there are atoms in exactly 12 g (or 0.012 kg) of the 12 C isotope.

Knowing that one mole of carbon weighs 12 g , the number of atoms in it is equal to :

One mole

$$
\frac{12 \mathrm{~g} / \mathrm{mol}^{12} \mathrm{C}}{1.992648 \times 10^{-23} \mathrm{~g} /{ }^{12} \mathrm{Catom}}
$$

$=6.0221367 \times 10^{23}$ atoms $/ \mathrm{mol}$

One mole $=6.022 \times 10^{23}$ Particles

- This number of entities in 1 mol is so important that it is given a separate name and symbol.
- It is known as 'Avogadro constant',
- denoted by N_{A} in honour of Amedeo Avogadro.
- To really appreciate largeness of this number, let us write it with all the zeroes without using any powers of ten.
- 6022|3670000000000000000

Examples

- 1 mol of hydrogen atoms $=6.022 \times 10^{23}$ atoms
- I mol of Nitrogen atoms $=6.022 \times 10^{23}$ atoms
- I mol of Diydrogen Molecules $=6.022 \times 10^{23}$ Diydrogen Molecules
- I mol of water molecules $=\mathbf{6 . 0 2 2 \times 1 0 ^ { 2 3 }}$ water molecules
- I mol of ammonia molecules $=\mathbf{6 . 0 2 2} \times 10^{23}$ ammonia molecules
- I mol of sodium chloride $=\mathbf{6 . 0 2 2} \times 10^{23}$ formula units of sodium chloride

Molar Mass=Mass of I mole particles

- 6.022×10^{23} Oxygen atoms $=16$ grams
- I mole of Oxygen atoms $=16$ grams
- 6.022×10^{23} Oxygen Molecules
- $=32 \mathrm{grams}$
- 6.022×10^{23} Water Molecules
- $=36 \mathrm{grams}$
- 6.022×10^{23} Ammonia Molecules
- = I7grams

One mole of various substances

PERCENTAGE COMPOSITION

Mass \% of an element =

mass of that element in the compound $\times 100$ molar mass of the compound

- Examples
- CO_{2}
- HNO_{3}
- CH_{4}
- $\mathrm{C}_{2} \mathrm{H}_{6}$

Empirical Formula for Molecular Formula

- An empirical formula represents the simplest whole number ratio of various atoms present in a compound
- whereas the molecular formula shows the exact number of different types of atoms present in a molecule of a compound.

Empirical Formula for Molecular Formula

1. A compound contains 43.4 \% Sodium, 11.3 \% carbon and 45.3% Oxygen. What is its empirical formula?

Element	symbol	$\%$	At mass Rative	Pate		
Sodium	Na	43.4	23		Simple Ratio	Simple Whole No
Ratio						

Empirical Formula for Molecular Formula

1. A compound contains 43.4 \% Sodium, 11.3 \% carbon and 45.3% Oxygen. What is its empirical formula?

Element	symbol	$\%$	At mass Reative No of Imoles	Simple Ratio	Simple Whole No Ratio	
Sodium	Na	43.4	23	$43.4 / 23=1.88$	$1.88 / 0.94$	2
Carbon	C	11.3	12	$11.3 / 12=0.94$	$0.94 / 0.94$	I
Oxygen	O	45.3	16	$45.3 / 16=2.83$	$2.83 / 0.94$	3

Empirical Formula for Molecular Formula

A compound contains 80% Carbon and 20\% Hydrogen. If its Molecular mass is 30 . calculate its empirical formula \& Molecular formula ?

Element	symbo I		At mass 2	Relative No of moles	Simple Ratio	Simple Whole No Ratio
Carbon	C	80	12			
Hydrogen	H	20	1			

empirical formula =

Empirical Formula for Molecular Formula

A compound contains 80% Carbon and 20\% Hydrogen. If its Molecular mass is 30 . calculate its empirical formula \& Molecular formula ?

Element	\| symbo I		At mass 2	Pelative No of moles	Simple Ratio	Simple Whole No Ratio
Carbon	C	80	12	$80 / 12=6.66$	6.66/6.66	1
Hydrogen	H	20	1	$20 / 1=20$	$20 / 6.66$	3

empirical formula $=\mathrm{CH}_{3}$

Calculate Molecular Formula

Molecular formula $=$ empirical formula $\times \mathrm{n}$
Where $n=1,2,3 \ldots \ldots$.
$\mathrm{n}=$ Molecular formula $/$ empirical formula
$\mathrm{n}=$ Molecular formula mass / empirical formula mass

Element	symbo I	$\%$	At mass	Relative No of moles	Simple Ratio	Simple Whole No Ratio
Carbon	C	80	12	$80 / \mathrm{I} 2=6.66$	$6.66 / 6.66$	I
Hydrogen	H	20	16	$20 / \mathrm{I}=20$	$20 / 6.66$	3

$\mathrm{n}=$ Molecular formula mass / empirical formula mass

- $\mathrm{n}=$ Molecular formula mass / empirical formula mass
- Molecuiar formula $=n \times$ empirical formula

Stoichiometry

$>$ The word 'stoichiometry' is derived from two Greek words -
$>$ stoicheion (meaning element) and metron (meaning measure).
$>$ Stoichiometry, thus, deals with the calculation of masses (sometimes volumes also) of the reactants and the products involved in a chemical reaction.

Information available from the balanced chemical equation

- Let us consider the combustion of methane.
- A balanced equation for this reaction is as given below

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Information available from the balanced chemical equation

- Methane and dioxygen are cailed reactants and carbon dioxide and water are called products.
- All the reactants and the products are gases in the above reaction and this has been indicated by letter (g) in the brackets next to its formula.
- Similarly, in the case of solids and liquids, (s) and (I) are written respectively

Information available from the balanced chemical equation
 $$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- The coefficients 2 for O_{2} and $\mathrm{H}_{2} \mathrm{O}$ are called stoichiometric coefficients.
- Similarly the coefficient for CH_{4} and CO_{2} is one in each case.
- They represent the number of molecules (and moles as well) taking part in the reaction or formed in the reaction

Thus, according to the above chemical reaction,

- One mole of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with two moles of $\mathrm{O}_{2}(\mathrm{~g})$ to give one mole of $\mathrm{CO}_{\mathbf{2}}(\mathrm{g})$ and two moles of $\mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{g})$
- One molecule of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with 2 molecuies of $\mathrm{O}_{2}(\mathrm{~g})$ to give one molecule of $\mathrm{CO}_{2}(\mathrm{~g})$ and 2 molecules of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Thus, according to the above chemical reaction,

- 22.4 L of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with 44.8 L of O_{2} (g) to give 22.4 L of $\mathrm{CO}_{2}(\mathrm{~g})$ and 44.8 L of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- 16 g of $\mathrm{CH}_{4}(\mathrm{~g})$ reacts with $2 \times 32 \mathrm{~g}$ of O_{2} (g) to give 44 g of $\mathrm{CO}_{2}(\mathrm{~g})$ and $2 \times 18 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Problem

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Calculate the amount of water (g) produced by the combustion of 16 g of methane.
- Ans:- 36 g.

Limiting Reagent

- The reactant which is present in the lesser amount gets consumed afcer sometime and after that no further reaction takes place whatever be the amount of the other reactant present.
- Hence, the reactant which gets consumed, limits the amount of product formed and is, therefore, called the limiting reagent.

Reactions in Solutions

- A majority of reactions in the laboratories are carried out in solutions.
- The concentration of a solution or the amount of substance present in its given volume can be expressed in any of the following ways.
- I. Mass per cent or weight per cent (w/w \%)
- 2. Mole fraction
- 3. Molarity
- 4. Molality

I. Mass per cent

- It is obtained by using the following relation:

Mass per cent $=\frac{\text { Mass of solute }}{\text { Massof solution }} \times 100$

I. Mass per cent

Problem

A solution is prepared by adding 4 g of a Sugar to 36 g of water. Calculate the mass per cent of the Sugar.

Ans:- Mass \% of sugar=10\%

2. Mole Fraction

- It is the ratio of number of moles of a particular component to the total number of moles of the solution.
- If a substance ' A ' dissolves in substance ' B ' and their number of moles are
- nA and nB respectively; then the mole fractions of A and B are given as

Mole fraction of A
$=\frac{\text { No. of moles of } \mathrm{A}}{\text { No. of moles of solution }}$

$$
=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{E}}}
$$

Mole fraction of B
No. of moles of B
$=\overline{\text { No. of moles of solution }}$

$$
=\frac{n_{\mathrm{e}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{E}}}
$$

3. Molarity

- It is defined as the number of moles of the solute in I litre of the solution.
- It is denoted by symbol M

$$
\text { Molarlty }(M)=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}
$$

4. Molality

- It is defined as the number of moles of solute present in I kg of solvent.
- It is denoted by m.

Molallty $(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}$

- Molarity of a solution depends upon temperature because volume of a solution is temperature dependent.

Thank you

- Vijaykumar N. Nazare.
- Grade ITeacher Senior Scale
- vnn001@ chowgules.ac.in

