	Shri Shantadurga Higher Secondary School, Bicholim-Goa.	
Class: - Day: - Time: - Total	Science ednesday (Subject:-Chemistry) Max Marks:-55 00 am. TO 11.30 am. Answer Key Date:- 29-03-2017 of Questions: -5 Second Terminal Examination- March 2017 Duration:-2 $\frac{1}{2}$ Hours Total No of Printed p	S 4
$\overline{\text { Q } 1 . ~}$	A mixture of acetic acid and sodium acetate acts as___ Acidic buffer_solution. \# Acidic buffer \# Basic buffer \# Neutral buffer \# Ionic buffer	1
$\begin{array}{\|l\|} \hline \text { Q } 1 \text { B } \\ \text { Ans } \end{array}$	Answer the following a) State the law of chemical equilibrium. At a given temperature, the product of concentrations of the reaction products raised to the respective stoichiometric coefficient in the balanced chemical equation divided by the product of concentrations of the reactants raised to their individual stoichiometric coefficients has a constant value. The equilibrium constant for a general reaction, $\begin{aligned} \mathrm{a} \mathrm{~A}+\mathrm{b} \mathrm{~B} & \rightarrow \mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D} \text { is expressed as, } \\ K_{c} & =[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \end{aligned}$ where $[\mathrm{A}],[\mathrm{B}],[\mathrm{C}]$ and $[\mathrm{D}]$ are the equilibrium concentrations of the reactants and products. b) Write one point of difference between Homogenous and Heterogeneous equilibrium. In a homogeneous system, all the reactants and products are in the same phase and Equilibrium in a system having more than one phase is called heterogeneous equilibrium c) What is a conjugate acid-base pair? The acid-base pair that differs only by one proton is called a conjugate acid-base pair. OR Therefore, OH^{-}is called the conjugate base of an acid $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$is called conjugate acid of the base NH_{3}.	3

Q 1 C	Answer the following 1. Write the expression for the equilibrium constant, $K c$ for the following reaction: $2 \mathrm{NOCl}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ Ans: $K_{c}=\frac{\left[\mathrm{NO}_{(\mathrm{si}}\right]^{2}\left[\mathrm{Cl}_{2(\mathrm{~g})}\right]}{\left[\mathrm{NOCl}_{(\mathrm{sk})}\right]^{2}}$ 2. For the equilibrium system described by $2 \mathrm{SO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$ at a particular temperature the equilibrium concentrations of SO_{2}, O_{2} and SO_{3} were $0.75 \mathrm{M}, 0.30 \mathrm{M}$, and 0.15 M , respectively. Calculate the equilibrium constant, K_{c}, for the reaction. Ans. Equilibrium constant expression for the balanced equation: $\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$ substitute the known values, and solve for the Unknown $\mathrm{K}_{\text {eq }}$ $\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{(0.15)^{2}}{(0.75)^{2}(0.30)}=0.13$ 3. Write the expression for solubility product for the following $\begin{aligned} & \mathbf{K}_{3} \mathbf{P O}_{4} \\ & \quad K_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3}\right] \end{aligned}$	3
Q 1 D	Answer the following questions. 1. Name the salts present in temporary hard water and permanent hard water. 2. Write a chemical equation showing laboratory method for preparation of Dihydrogen gas $\mathrm{Zn}+2 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \text { or } \mathrm{Zn}+2 \mathrm{NaOH} \rightarrow \underset{\text { Sodium zincate }}{\mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}}$	2
Q 1 E	Write the formula and one use of the following 1. Heavy water $\mathrm{D}_{2} \underline{\mathrm{O}}$ \qquad It_is used as a moderator in nuclear reactors 2. Hydrogen peroxide $\mathbf{H}_{2} \mathrm{O}_{2}$ It is used in pollution control treatment of domestic and industrial effluents. it is used as a hair bleach and as a mild disinfectant. As an antiseptic it is sold in the market as perhydrol . It is used to manufacture chemicals like sodium perborate and per-carbonate It is used in the synthesis of hydroquinone, tartaric acid and certain	2

	food products and pharmaceuticals (cephalosporin) etc It is employed in the industries as a bleaching agent for textiles, paper pulp, leather, oils, fats, etc	
Q 2 A	$\begin{array}{cc}\text { The saline Hydride from the following is } \\ \# \mathrm{H}_{2} \mathrm{O} & \# \mathrm{VH}_{0.56}\end{array} \frac{\mathbf{B e H}_{2}}{\# \mathrm{BeH}_{2}} \quad \# \mathrm{CH}_{4}$	1
Q 2 B	Answer the following. a) Determine the Oxidation number of the underlined element in following compounds 1. $\mathrm{KMnO}_{4} \quad$ 2. $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ b) Write a note on Green Chemistry. Ans. Green chemistry is a strategy for controlling environmental pollution. It utilizes the existing knowledge and practices so as to bring about reduction in the production of pollutants c) What is Acid rain and how it is caused? Normally rain water has a pH of 5.6 . When the pH of the rain water drops below 5.6 , it is called acid rain. Acid rain refers to the ways in which acid from the atmosphere is deposited on the earth's surface. Acid rain is a byproduct of a variety of human activities that emit the oxides of sulphur and nitrogen in the atmosphere. SO_{2} and NO_{2} after oxidation and reaction with water are the major contributors to acid rain, as polluted air contains particulate matter that catalyse the oxidation. $\begin{aligned} & 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\ & 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq}) \end{aligned}$	3
Q 2 C	Answer the following. 1) Using the standard electrode potentials given below, predict if the reaction between the following is feasible or not $\begin{gathered} \mathbf{F e}+\mathbf{C d}^{2+} \rightarrow \mathbf{C d}+\mathbf{F e}^{2+} \\ \mathrm{E}^{0}\left(\mathrm{Cd}^{2+} / \mathrm{Cd}\right)=-0.44 \mathrm{~V} \text { and } \mathrm{E}^{0}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)=-0.74 \mathrm{~V} \end{gathered}$ 2) Identify the Oxidising and Reducing agent in the following reaction. $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	3

	3) Write the Oxidation and Reduction half-cell reaction for the following cell $\mathrm{Al}\left\|\mathrm{Al}^{3+}{ }_{(1 \mathrm{M})} \\| \mathrm{Cu}^{2+}{ }_{(1 \mathrm{M})}\right\| \mathrm{Cu}$	
Q 2 D	Define the following. 1) Oxidation 2) Reduction 3) Oxidising agent 4) Reducing agent Ans : Oxidation: Loss of electron(s) by any species. Reduction: Gain of electron(s) by any species. Oxidising agent : Acceptor of electron(s). Reducing agent : Donor of electron(s). OR Oxidation: An increase in the oxidation number of the element in the given substance. Reduction: A decrease in the oxidation number of the element in the given substance. Oxidising agent: A reagent which can increase the oxidation number of an element in a given substance. These reagents are called as oxidants also. Reducing agent: A reagent which lowers the oxidation number of an element in a given substance. These reagents are also called as reductants.	2
Q 2 E	Answer the following. I. Write two functions of salt bridge Ans: It connects the two half cells and maintains the electrical neutrality II. Write the IUPAC names for the following compounds. a. 2-Methylpropan-1-ol b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ Propan-1-amine	2
Q3 A	The general electronic configuration of the outermost orbit in the case of alkaline earth metal is: \qquad $-\mathrm{ns}^{2}$ $\# \stackrel{\mathbf{n s}}{\mathbf{n s}} \overline{\mathbf{n n p}^{\mathbf{2}}} \# \mathbf{n s}^{\mathbf{2}} \quad \# \mathbf{n s}^{\mathbf{2}} \mathbf{n p}^{\mathbf{2}} \quad \# \mathbf{n s}^{1}$	1
Q3 B	Answer the following. 1. Look at the structure shown below and answer the questions	3

	2. Name some important compounds of silicon Silicon Dioxide, Silicones \& Silicates
Q 3 C	Answer the following. 1. Write any four points of difference between Diamond \& Graphite. 2. Draw the structure of Diborane

Q 3 D	Write any four points of similarities between lithium \& Magnesium. (i) Both lithium and magnesium are harder and lighter than other elements in the respective groups. (ii) Lithium and magnesium react slowly with water. Their oxides and hydroxides are much less soluble and their hydroxides decompose on heating. Both form a nitride, Li3N and Mg3N2, by direct combination with nitrogen. (iii) The oxides, Li2O and MgO do not combine with excess oxygen to give any superoxide. (iv) The carbonates of lithium and magnesium decompose easily on heating to form the oxides and CO2. Solid hydrogencarbonates are not formed by lithium and magnesium. (v) Both LiCl and MgCl2 are soluble in ethanol. (vi) Both LiCl and MgCl2 are deliquescent and crystallise from aqueous solution as hydrates, LiCl-2H2O and MgCl2.8H2O.	2

	 \#	
Q 4 B	Explain the following name reactions with equation a) Wurtz Reaction Alkyl halides on treatment with sodium metal in dry ethereal (free from moisture) solution give higher alkanes. This reaction is known as Wurtz reaction and is used for the preparation of higher alkanes containing even number of carbon atoms. $\mathrm{CH}_{3} \mathrm{Br}+2 \mathrm{Na}+\mathrm{BrCH}_{3} \xrightarrow{\text { dry ether }} \mathrm{CH}_{3}-\mathrm{CH}_{3}+2 \mathrm{NaBr}$ Bromomethane Ethane $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+2 \mathrm{Na}+\mathrm{BrC}_{2} \mathrm{H}_{5} \xrightarrow{\text { dry ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}$ Bromoethane n-Butane b) Pyrolysis Higher alkanes on heating to higher temperature decompose into lower alkanes, alkenes etc. Such a decomposition reaction into smaller fragments by the application of heat is called pyrolysis or cracking. $\mathrm{C}_{6} \mathrm{H}_{14} \xrightarrow{773 \mathrm{~K}} \quad \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{H}_{2}$ c) Polymerisation Reaction Polythene is obtained by the combination of large number of ethene molecules at high temperature, high pressure and in the presence of a catalyst. The large molecules thus obtained are called polymers. This reaction is known as polymerisation. The simple compounds from which polymers are made are called monomers. Polymers are used for the manufacture of plastic bags, squeeze bottles, refrigerator dishes, toys, pipes, radio and T.V. cabinets etc.	3
Q 4 C	Complete the following chemical equations by replacing A,B,C,D,X and Y (i)	3

Q4D

	2) Geometrical isomers of Hex-2-ene Geometrical isomers of hex-2-ene are: Cis - isomer Trans - isomer	
Q 5 A	\qquad $3 f$ orbital of the following is an incorrect orbital notation. \# 2s	1
Q 5 B	Answer the following (i) Draw the orbital diagrams for O and Si . How many unpaired electrons are in each of these? Ans. There are 2 unpaired electrons in each. (ii) For the principle quantum no. $\mathbf{n}=\mathbf{4}$; How many types of orbitals are there? How many electrons can be accommodated in the complete principle shell? Ans. For $n=4$, there are four possible values for I. They are; 0 s orbitals 1 p orbitals 2 d orbitals 3 f orbitals For each of these there are values for ml $\mathrm{l}=0, \mathrm{ml}=0=2$ electrons $\mathrm{I}=1, \mathrm{ml}=-1,0,+1=6$ electrons $\mathrm{I}=2, \mathrm{ml}=-2,-1,0,1,2=10$ electros $\mathrm{I}=3, \mathrm{ml}=-3,-2,-1,0,1,2,3=14$ electrons Each orbital can accommodate 2 electrons hence total no. of electrons $\mathbf{= 3 2}$	3

Q 5 C	Write the IUPAC names for the following compounds OR	3
Q 5 C	Write the structures for the following compounds by rewriting their IUPAC names I. Pent-4-en-2-ol II. 2-Chloro-4-methylpentane III. 2-Bromobutane	3
Q 5 D	Deduce the Hybridization of Boron in BF_{3} The ground state electronic configuration of B is $1 s^{2} 2 s^{2} 2 p^{1}$. The promotion of one ' $2 s$ ' electron to one of the empty ' 2 p ' orbital permits the possibility of ' $\mathrm{sp}^{2 \text { ' }}$ hybridisation. The three ' sp^{21} hybrid orbitals are oriented at 120° in a plane giving a trigonal geometry around the boron atom.	2

	Illustration: Boron fluoride - BF_{3} Fluorine has one half filled p orbital and boron has three half filled 'sp ${ }^{21}$ filled orbitals at 120° angle. The half-filled p orbital of fluorine overlaps with each of the sp^{2} hybrid orbitals of B to form sigma bond between B and F giving it a trigonal planar or triangular planar geometry. Fig: - Formation of BF_{3} molecule	
Q 5 E	A gas tanker carries helium gas at a pressure of 2.5 atmospheres at $25^{\circ} \mathrm{C}$.The tanker can withstand a maximum pressure of 10 atmospheres. It collides with a truck and catches fire. According to the above information the tanker will blow up after the collision or it will catch fire. Explain. (Melting point of iron $=1535^{\circ} \mathrm{C}$) Ans. The pressure built up in the tanker at melting point of iron is: $\begin{aligned} & \mathrm{P}_{1}=2.5 \mathrm{~atm}, \mathrm{P}_{2}=?, \mathrm{~T}_{1}=25^{\circ} \mathrm{C}, \mathrm{~T}_{2}=1535^{\circ} \mathrm{C}=1808 \mathrm{~K} \\ & \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \text { or } \mathrm{P}_{2}=\frac{\mathrm{P}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{2.5 \times 1808}{298}=15.16 \mathrm{~atm} \end{aligned}$ Since, the pressure of the gas in the tank is much more than 10 atm at the melting point. Thus, the tank will blow up before reaching the melting point.	2

