

Q 1 E	Write the formula and one use of the following 1. Heavy water 2. Hydrogen peroxide	2	
Q 2 A	The saline Hydride from the following is \qquad \# $\mathrm{H}_{2} \mathrm{O} \quad$ \# VH $\mathrm{V}_{0.56} \quad$ \# $\mathrm{BeH}_{2} \quad$ \# CH	1	
Q 2 B	Answer the following. a) Determine the Oxidation number of the underlined element in following compounds $\begin{array}{lll} \text { 1. } \mathrm{KMnO}_{4} & \text { 2. } \underline{\mathrm{S}}_{2} \mathrm{O}_{3}{ }^{2-} \end{array}$ b) Write a note on Green Chemistry. c) What is Acid rain and how it is caused?	3	
Q 2 C	Answer the following. 1) Using the standard electrode potentials given below, predict if the reaction between the following is feasible or not $\begin{aligned} & \mathbf{F e}+\mathbf{C d}^{2+} \mathbf{C} \mathbf{C d}+\mathbf{F e}^{2+} \\ & \mathrm{E}^{0}\left(\mathrm{Cd}^{2+} / \mathrm{Cd}\right)=-0.44 \mathrm{~V} \text { and } \mathrm{E}^{0}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)=-0.74 \mathrm{~V} \end{aligned}$ 2) Identify the Oxidising and Reducing agent in the following reaction. $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ 3) Write the Oxidation and Reduction half-cell reaction for the following cell $\mathrm{Al}\left\|\mathrm{Al}^{3+}{ }_{(1 \mathrm{M})} \\| \mathrm{Cu}^{2+}{ }_{(1 \mathrm{M})}\right\| \mathrm{Cu}$	3	
Q 2 D	Define the following 1) Oxidation 2) Reduction 3) Oxidising agent 4) Reducing agent	2	
Q 2 E	Answer the following. I. Write two functions of salt bridge II. Write the IUPAC names for the following compounds. a. b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	2	
Q 3 A	The general electronic configuration of the outermost orbit in the case of alkaline earth metal is: \qquad \# $\mathrm{ns}^{2} \mathrm{np}^{1} \# \mathrm{~ns}^{2} \quad \# \mathrm{~ns}^{2} \mathrm{np}^{2} \quad \# \mathrm{~ns}^{1}$	1	
Q 3 B	Answer the following. 1. Look at the structure shown below and answer the questions	3	

	2. Name some important com	1.Name this structure 2. Number of six membered rings present in it. 3.Type of Hybridization that carbon atom has undergone 4. How it is prepared. ounds of silicon	
Q3 C	Answer the following. 1. Write any four points of di 2. Draw the structure of Dibo	erence between Diamond \& Graphite. ane	3
Q3 D	Write any four points of similarities betw	n lithium \& Magnesium.	2
Q3E	Comment on following properties with re 1. Ionization enthalpy 2. Atomic and ionic radii. Give reason for the following (i) The hydroxides of alkali metals a (ii) Be and Mg does not give colour to metals do so.	pect to Alkaline earth metals strong bases. the flame whereas other alkaline earth	2
Q4 A	The compound which does not obey Huck \# \#	1 rule is \qquad	1
Q4 B	Explain the following name reactions with a) Wurtz Reaction b) Pyrolysis c) Polymerisation Reaction	equation	3
Q 4 C	Complete the following chemical equation (i)	by replacing $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{X}$ and Y \qquad	3

	(ii) \qquad C D $\xrightarrow{\text { Anhyd. } \mathrm{AlCl}_{3}}$ (iii) \qquad x \qquad $+6 \mathrm{Cl}_{2}$ dark, cold \qquad $+\mathrm{Hcl}$	
Q 4 D	Write chemical equations showing how you will carry out following conversions. 1) Ethyne to Benzene 2) Benzene to Nitrobenzene	2
Q 4 E	Draw the following 1) Draw the Sawhorse projection formulae of ethane in staggered and eclipsed forms. 2) Geometrical isomers of Hex-2-ene	2
Q 5 A	\qquad orbital of the following is an incorrect orbital notation. \# 2s \# 2p \# 3f \# 3d	1
Q 5 B	Answer the following (i) Draw the orbital diagrams for O and Si . How many unpaired electrons are in each of these? (ii) For the principle quantum no. $\mathbf{n}=\mathbf{4}$; How many types of orbitals are there? How many electrons can be accommodated in the complete principle shell?	3
Q 5 C	Write the IUPAC names for the following compounds 1. $\mathrm{CH}_{3}-\mathrm{CHO}$ 2. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	3
Q 5 C	Write the structures for the following compounds by rewriting their IUPAC names I. Pent-4-en-2-ol II. 2-Chloro-4-methylpentane III. 2-Bromobutane	3
Q 5 D	Deduce the Hybridization of Boron in BF_{3}	2
Q 5 E	A gas tanker carries helium gas at a pressure of 2.5 atmospheres at $25^{\circ} \mathrm{C}$. The tanker can withstand a maximum pressure of 10 atmospheres. It collides with a truck and catches fire. According to the above information the tanker will blow up after the collision or it will catch fire. Explain. (Melting point of iron- $\mathbf{1 5 3 5}^{\mathbf{\circ}} \mathrm{C}$)	2

