

www.vijaynazare.weebly.com

INORGANIC VOLUMETRIC ANALYSIS

REDOX TITRATIONS

Experiment No:-	Date:
Aim:- You are provided with two solutions as follows	s.
Container A: N Solution of Hydrated	Mohr's Salt.
Container B: - <u>KMnO₄</u> Solution.	
Titrating these solutions determine the	
 Normality of the solution in container B. Strength of less /more concentrated solution in container 	er B/C in terms of gms/ ml.
Apparatus & Chemicals Required:-	
Burette, Pipette conical flask Burette stand white tile, KMnO ₄ and Dil. sulphuric acid	Solution, Hydrated Mohr's Salt
Theory:-	
This is a Redox titration where Neutralization point is due to occurring simultaneously. In this titration - KMnO ₄ und oxidation number of manganese ion from +7 to +2 and Mochange in oxidation number of iron+2(Ferrous) to +3(Ferric) agent and Mohr's Salt acts as reducing agent and at the colourless to light pink	ergoes reduction with change in hr's Salt undergoes oxidation with Thus acts as a - <u>KMnO₄ Oxidizing</u>
(b) Ionic equation	
Reduction half reaction : $MnO_4^- + 5e^- + 8H^+ \longrightarrow M_1$ Oxidation half reaction : $Fe^{2+} \longrightarrow Fe^{3+} + e^-] \times 5$	n ²⁺ + 4H ₂ O
MnO ₄ - + 5Fe ²⁺ + 8H ⁺	→ Mn ²⁺ + 5Fe ³⁺ + 4H ₂ O

www.vijaynazare.weebly.com

P	ro	cec	łո	re	•

- 1. Rinse the pipette with the given _____ N Mohr's Salt solution and pipette out 10 ml of it in a washed titration flask.
- 2. Rinse and fill the burette with the given KMn0₄ solution.
- 3. Add one test-tube (15 ml) or One and half (if test tube size is small) test tube of dilute sulphuric acid (2 N) to the solution in the titration flask.
- 4. Note the initial reading of the burette.
- 5. Add KMn0₄ solution from the burette till a permanent light pink colour is imparted to the solution in the titration flask on addition of the last single drop of KMn0₄ solution.
- 6. Note the final reading of the burette.
- 7. Repeat the above steps to get three concordant readings.

Result:

Solution	Normality	Grams/ml
KMnO ₄		
-		
Mohr's Salt		

Solution is Less/More Concentrated in terms of	f Normality/ gms per	m
--	----------------------	---

www.vijaynazare.weebly.com

- 1. Given:-
- 2. To find:

Observations:

- 1. Solution in Burette: KMn0₄solution.
- 2. Pipette Solution: Mohr's Salt Solution
- 3. Solution in Flask: 10 ml of ----- N/M Mohr's Salt+ 1test tube di!. H₂SO₄,
- 4. Indicator: KMnO₄ acts as self indicator.
- 5. End point: Colourless to light pink.

Chemical equations:

$$2KMnO_4 + 8H_2SO_4 + 10FeSO_4 (NH_4)_2 SO_4 \cdot 6H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 \\ + 10(NH_4)_2SO_4 + 68H_2O$$

Observation Table:

Pilot Reading ____ml To ____ml.

Burette Reading	I	II	III	Constant Burette Reading (C.B.R.)
Final	mL	mL	mL	
Initial	OmL	OmL	OmL	mL
Difference	mL	mL	mL	

Calculations:

- 1. To calculate Normality of : $KMn0_4$ solution = N_1V_1 = N_2V_2
- 2. To calculate Grams per -----ml = $N \times Eq.Wt \times ------/1000$