SHRI SHANTADURGA HIGHER SECONDARY SCHOOL
 BICHOLIM - GOA
 MID-TERM PRACTICE TEST (2020-21)

Subject: Chemistry

Date: 21 /11/2020
Class: XI Science
Maximum Marks: 20

INSTRUCTIONS:

1) All questions are compulsory, however question 4 and 10 has internal choice.
2) Use of calculator is not permitted, however logarithmic table may be used.
3) Every question should be attempted only once.
4) Section-A consists of 4 questions of 1 mark each. Section-B consists of $\mathbf{3}$ questions of 2 marks each. Section-C consists of 2 questions of 3 marks each. Section-D consists of 1 question of 4 marks.
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$, Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}$
Atomic masses: $\mathrm{H}=1 \mathrm{u} \quad \mathrm{He}=4 \mathrm{u} \quad \mathrm{N}=14 \mathrm{u} \quad 0=16 \mathrm{u} \quad \mathrm{Na}=23 \mathrm{u} \quad \mathrm{Ca}=40 \mathrm{u}$

SECTION - A
Q. 1 The number of water molecules present in 18 g of water is \qquad -. 01
$* 1.2044 \times 10^{24} * 6.022 \times 10^{22} * 3.011 \times 10^{23} * 6.022 \times 10^{23}$
Q. 2 The frequency of a electromagnetic wave with wavelength $\lambda=600 \mathrm{~nm}$ is 01
$\% 0.5 \times 10^{15} \mathrm{~s}^{-1} \quad * 5 \times 10^{15} \mathrm{~s}^{-1} \quad * 0.5 \times 10^{16} \mathrm{~s}^{-1} \quad * 5.5 \times 10^{12} \mathrm{~s}^{-1}$
Q. 3 Write the IUPAC nomenclature for the following
a) The element which is named after scientist Dmitri Mendeleev.
b) The element with highest atomic number present in Modern periodic table.
Q. 4 Write a point of difference between Orbit and Orbital.

OR
Q. 4 Write a point of difference between absorption spectrum and emission spectrum.

SECTION - B
Q. $5 \quad$ How would you justify the presence of 18 elements in the $4^{\text {th }}$ period of the 02
Periodic Table?
Q. 6 Answer the following questions with respect to p block elements.
a) Which group elements are coming under p block elements?
b) Write the general electronic configuration of these elements.
Q. 7 Write the four postulates of Bohr's model of atom.
Q. 8 (i) An organic compound conatins 38.8% of Carbon; 16.2% of hydrogen; 03 45.1% of nitrogen. Calculate its empirical formula.
(ii) At STP, what volume of $\mathrm{H}_{2}(\mathrm{~g})$ is needed to react completely with 8.02 x $10{ }^{23}$ molecules of $\mathrm{CO}(\mathrm{g})$? $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$
Q. 9 Answer the following:
i) Designate the orbital notation for $\mathrm{n}=3$ and $\mathrm{I}=2$
ii) Write electronic configuration for $\mathrm{Ne}(\mathrm{Z}=10)$
iii) State Heisenberg uncertainty principle with its mathematical expression

SECTION - D

Q. 10 Answer the following questions: 04 i)Define Normality.
ii) 1.75 g of NaOH is dissolved to make 550 ml of solution. Determine Molarity of the solution. Density of solution $=2.13 \mathrm{~g} / \mathrm{ml}$
$(H=1,0=16, N a=23)$
iii)For the reaction: $A+B_{2} \rightarrow A B_{2}$

Identify the limiting reagent for the following reaction mixture.

$$
6 \text { moles of } A \text { and } 7 \text { moles of } B
$$

iv)Balanced the following chemical reaction:

OR
Answer the following questions:
Q. 10
i) Define Limiting reagent.
ii) The density of 4 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution.
iii) Calculate mass percentage of oxygen in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. ($\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$)
iv) Balanced the following chemical reaction:

$$
\mathrm{Ag}+\mathrm{PCl}_{5} \rightarrow \mathrm{AgCl}+\mathrm{PCl}_{3}
$$

