SHiRI SHANTADURGA HIGHIR SECONDARY SCHOOL

BICHOLIM - GOA
MID-TERM PRACTICE TEST (2020-21)

Subject: Chemistry
Maximum Marks: 20

Date: 21 /11/2020
ANSWER KEY

Class: XI Science
Duration: 1 hour

Q. 1	The number of water molecules present in 18 g of water is $\quad \underline{\mathbf{6 . 0 2 2} \times 10}{ }^{23}$ $* 1.2044 \times 10^{24} * 6.022 \times 10^{22} * 3.011 \times 10^{23} * 6.022 \times 10^{23}$	01
Q. 2	The frequency of an electromagnetic wave with wavelength $\lambda=600 \mathrm{~nm}$ is $\frac{\mathbf{0} .5 \times 10^{15} \mathrm{~s}^{-1}}{* 0.5 \times 10^{15} \mathrm{~s}^{-1}} \sigma^{*} \quad * 5 \times 10^{15} \mathrm{~s}^{-1} \quad * 0.5 \times 10^{16} \mathrm{~s}^{-1} \quad * 5.5 \times 10^{12} \mathrm{~s}^{-1}$	01
Q. 3	Write the IUPAC nomenclature for the following. a) The element which is named after scientist Dmitri Mendeleev. Mendelevium Additional information ($\mathrm{Z}=101$ Name: Unnilunium= symbol= Unu) b) The element with highest atomic number present in Modern periodic table. Oganesson Additional information ($\mathrm{Z}=118$ Name = Ununoctium symbol= Uuo)	01
Q. 4	Write a point of difference between Orbit and Orbital. OR	01

Q. 4	Write a point of difference between absorption spectrum and emission spectrum.		01
	Emission Spectra	Absorption Spectra	
	Produced when atoms release energy	Produced when atoms absorb energy	
	Comprise coloured lines in the spectrum	Comprise dark lines or gaps in the spectrum	
	It is helpful in figuring out the composition of a certain matter	Can be used to figure out the ability of certain objects to retain heat and its absorption level	
	The type of photons emitted is helpful in figuring out the kind of elements the substance is made of as each element radiates a different amount of energy and has a unique emission level	The wavelengths of light absorbed is helpful in figuring out the number of substances in the sample	

SECTION - B

Q. 5	How would you justify the presence of 18 elements in the $4^{\text {th }}$ period of the Periodic Table? Answer: When we consider - $\mathrm{n}=4$, the orbitals $3 \mathrm{~d}, 4 \mathrm{~s}$ and 3 p present in the (form of) outermost shells show the order of their increasing energies - i.e. $3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}$. Since the total number of orbitals available are 9 (1 from 4 s, 3 from 3 p \& 5 from 3d orbital), the maximum number of electrons that can occupy the three orbitals is 18 .	02
Q. 6	Answer the following questions with respect to p block elements. a) Which group elements are coming under p block elements? Elements from Group 3 to Group 12 b) Write the general electronic configuration of these elements. The general electronic configuration of p-block elements is ns ${ }^{2} \mathbf{n p}^{1-6}$ except for Helium (He)	02
Q. 7	Write the four postulates of Bohr's model of atom.	02

Main postulates of Bohr's model of an atom are:

1. In an atom, the electrons revolve around the nucleus in certain definite circular paths called orbits, or shells.
2. Each shell or orbit corresponds to a definite energy. Therefore, these circular orbits are also known as energy levels or energy shells.
3. The orbits or energy levels are characterized by an integer not, where, n can have values 1,2 , $3,4 \ldots . .$. . The integer not ($=1,2,3 \ldots$) is called the quantum number of respective orbit. The orbits are numbered as $1,2,3,4$. \qquad etc., starting from the nucleus side. Thus, the orbit for which $\mathrm{n}=1$ is the lowest energy level.
The orbits corresponding to $\mathrm{n}=1,2,3,4 . . .$. .etc., are also designated as K,L,M,N... ...etc., shells. When the electron is in the lowest energy level, it is said to be in the ground state.

Since, electronics can be present only in these orbits, hence, these electrons can only have energies corresponding to these energy levels, i.e., electrons in an atom can have only certain permissible energies.
4. The electrons present in an atom can move from a lower energy level (Elower) to a level of higher energy (Ehigher) by absorbing the appropriate energy. Similarly, an electron can jump from a higher energy level (Ehigher) to a lower energy level (Elower) by losing the appropriate energy.

The energy absorbed or lost is equal to the difference between the energies of the two energy levels, i.e.,
$\Delta \mathrm{E}=\mathrm{E}$ (higher) - E (lower)
SECTION - C

Q. 8	(i) An organic compound conatins 38.8% of Carbon; 16.2% of hydrogen; 45.1% of nitrogen. Calculate its empirical formula. ANSWER Let 100 gm of compound man of carbon $=38.8 \mathrm{~g}$. man of hydrogen $=16.2 \mathrm{~g}$ man of nitrogen $=45.1 \mathrm{~g}$ number of mole of carbon $=\frac{38.8}{12}=3.176$ number of mole of hydrogen $=\frac{16.2}{1}=16.2$ number of mole of nitrogen $=\frac{45.1}{14}=3.22$ $3.176: 16.2: 3.22$ $1: 5: 1$ Empirical formula $\mathrm{CH}_{3} \mathrm{~N}$ (ii) At STP, what volume of $\mathrm{H}_{2}(\mathrm{~g})$ is needed to react completely with 8.02 x $10{ }^{23}$ molecules of $\mathrm{CO}_{(\mathrm{g})}$? $\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})}$ Answer $\begin{aligned} & \frac{8.02 \times 10^{23} \text { molecules }}{6.02 \times 10^{23} \text { particles }} \times 1 \text { mole } \mathrm{CO}(\mathrm{~g})=1.33 \text { moles } \mathrm{CO}(\mathrm{~g}) \\ & \frac{1.33 \text { moles } \mathrm{CO}(\mathrm{~g})}{1 \text { mole } \mathrm{CO}(\mathrm{~g})} \times 2 \text { moles } \mathrm{H}_{2}(\mathrm{~g})=2.66 \text { moles } \mathrm{H}_{2}(\mathrm{~g}) \\ & \frac{2.66 \text { moles } \mathrm{H}_{2}(\mathrm{~g})}{1 \mathrm{~mole}_{2}(\mathrm{~g})} \times 22.4 \mathrm{~L}=59.7 \mathrm{~L} \end{aligned}$	03

Q. 9	Answer the following: i) Designate the orbital notation for $\mathrm{n}=3$ and $\mathrm{I}=2$ ANS: 3d ii) Write electronic configuration for $\mathrm{Ne}(\mathrm{Z}=10)$ ANS: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}=[\mathrm{Ne}] 3 s^{1}$ iii) State Heisenberg uncertainty principle with its mathematical expression ANSWER Heisenberg's uncertainty principle- It states that the position and momentum of microscopic moving particles cannot be determined simultaneously with accuracy or certainty. Mathematical expression- $\begin{aligned} & \Delta \mathrm{x} \times \Delta \mathrm{P}>\text { or }=\frac{\mathrm{h}}{4 \pi} \\ & \Delta \mathrm{x}=\text { uncertainty in the position } \\ & \Delta \mathrm{P}=\text { uncertainty in the momentum } \\ & \mathrm{h}=\text { Planck's constant. } \end{aligned}$	03

SECTION - D

Q. 10	iii)For the reaction: $A+B_{2} \rightarrow A B_{2}$ Identify the limiting reagent for the following reaction mixture. 6 moles of A and 7 moles of B Ans: $6 \mathrm{~mol} A+7 \mathrm{~mol} \mathrm{~B}$: In this reaction, 1 molecule of A reacts with 1 molecule of B. hence, 6 molecules of A will react with 6 molecules of B. Here, 1 molecule of B will be left unreacted. A is limiting reagent. iv)Balance the following chemical reaction: ANS: $\begin{aligned} & \mathrm{HgCl}_{2}+\mathrm{PH}_{3} \rightarrow \mathrm{Hg}_{3} \mathrm{P}_{2}+\mathrm{HCl} \\ & 3 \mathrm{HgCl}_{2}+2 \mathrm{PH}_{3} \rightarrow \mathrm{Hg}_{3} \mathrm{P}_{2}+6 \mathrm{HCl} \end{aligned}$ OR Answer the following questions: i) Define Limiting reagent. The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. ... The limiting reagent is the one that is totally consumed; it limits the reaction from continuing because there is none left to react with the in-excess reactant. ii) The density of 4 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution. Answer: Molatily of the solution is $=3.94 \mathrm{~m}$ Explanation: molar mass of $\mathrm{NaCl}=58.5$ No. of moles $=$ weight $/$ molecular weight weight $=$ no.of moles \times molecular weight Mass of NaCl in 1 lit solution $=4 \times 58.5=234$ Mass $=$ density \times volume Mass of 1 lit solution $=1000 \times 1.25=1250 \mathrm{~g}$ mass of water in solution $=$ mass of solution - mass of solute $=1250-234=1016 \mathrm{~g}$ mass of water in solution $=1.016 \mathrm{~kg}$ molality $=$ no. of moles of solute $/$ mass of solvent in $\mathrm{kg}=4 / 1.016=3.94 \mathrm{~m}$ Molality of the solution is $\mathbf{= 3 . 9 4} \mathbf{~ m}$ iii) Calculate mass percentage of oxygen in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. $(H=1, C=12, O=16)$ ANSWER Total molar mass of O-atoms present in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 16=96 \mathrm{~g} / \mathrm{mol}$ Percentage composition $=96 / 180 \times 100=53.33 \%$ iv) Balance the following chemical reaction: $\begin{array}{cc} \mathrm{Ag}+\mathrm{PCl}_{5} & \rightarrow \mathrm{AgCl}+\mathrm{PCl}_{3} \\ \text { Answer : } 2 \mathrm{Ag}+\mathrm{PCl}_{5} & \rightarrow 2 \mathrm{AgCl}+\mathrm{PCl}_{3} \end{array}$

