# Shri Shantadurga Higher Secondary School, Bicholim-Goa. First Terminal Examination October/November-2018

| Std: XI Science  |                                                                                                                      |                                                                                                                                        | Max Marks: 55                                   |     |  |
|------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|--|
| Date: 26/10/2018 |                                                                                                                      | Chemistry                                                                                                                              | Duration: 150 Minutes                           |     |  |
|                  | Instructions:-<br>1. All questions are con<br>2. Use of calculator is a<br>3. Every Question show<br>Section-A consi | npulsory; however question <b>8, 24,</b> and <b>25</b> ho<br>not permitted, however logarithmic table wi<br>Id be attempted only once. | as internal choice.<br>Il be provided on reques | st. |  |
|                  | Section I const<br>Section-B const<br>Section-C const<br>Section-D const                                             | sts of 8 questions of 2 marks each.<br>sts of 8 questions of 3 marks each.<br>ists of 2 questions of 4 marks each.                     |                                                 |     |  |
|                  | $N_A = 6.022 \times 10^{23};$<br>At mass (u): H=1, C=1                                                               | 2, <i>O</i> =16, <i>S</i> =32; <i>K</i> =39                                                                                            |                                                 |     |  |
| Section-A        |                                                                                                                      |                                                                                                                                        |                                                 |     |  |
| Q.1.             | Shortest bond length i                                                                                               | s observed in                                                                                                                          |                                                 | (1) |  |
|                  | # C-C                                                                                                                | $\# C = C \qquad \# C \equiv C \qquad \# al$                                                                                           | 1 of these                                      |     |  |
| Q.2              | A mixture of two gases                                                                                               | s, having partial pressure $p_1$ and $p_2$ , has total                                                                                 | pressure p, then:                               | (1) |  |
|                  | # $p = p_1 + p_2$                                                                                                    |                                                                                                                                        | $p = \frac{p_1 + p_2}{2}$                       |     |  |
| Q.3.             | Synthesis gas is a mix                                                                                               | ture of                                                                                                                                |                                                 | (1) |  |
|                  | # CO+CH <sub>3</sub> #                                                                                               | $#CO+ H_2$ $#C+CO$ $#C+H_2O_2$                                                                                                         | 2                                               |     |  |
| Q.4.             | Increased concentration                                                                                              | n of CO <sub>2</sub> in atmosphere is responsible for                                                                                  |                                                 | (1) |  |
|                  | # greenhouse effect                                                                                                  | # acid rain # lack of photosynthesis #                                                                                                 | death of aquatic life                           |     |  |
| Q.5.             | Name the experiment t                                                                                                | hat formed the basis of <b>Rutherford's mode</b>                                                                                       | l of atom.                                      | (1) |  |
| Q.6.             | Write the general elect                                                                                              | ronic configuration for <b>f-block</b> elements.                                                                                       |                                                 | (1) |  |
| Q.7.             | Suggest any two metho                                                                                                | ods to avoid/reduce <b>Sound</b> pollution.                                                                                            |                                                 | (1) |  |
|                  |                                                                                                                      | Section-B                                                                                                                              |                                                 |     |  |
| Q.8              | Calculate the molarity                                                                                               | of a solution containing 20.7g of potassium                                                                                            | carbonate (K <sub>2</sub> CO <sub>3</sub> )     | (2) |  |
|                  | dissolved in 500ml of s                                                                                              | solution.                                                                                                                              |                                                 |     |  |
|                  |                                                                                                                      | OR                                                                                                                                     |                                                 |     |  |
| Q.8              | The composition of a Determine the <b>empiric</b>                                                                    | n organic compound is 92.4% <b>Carbon</b> a <b>cal formula</b> of the compound.                                                        | nd 7.6% <b>Hydrogen</b> .                       | (2) |  |
| Q.9              | Give reason for the fol                                                                                              | lowing.                                                                                                                                |                                                 | (2) |  |
|                  | a) Boron has less ionization enthalpy than Beryllium.                                                                |                                                                                                                                        |                                                 |     |  |
|                  | b) Oxygen has lower in                                                                                               | onization enthalpy than Nitrogen and Flour                                                                                             | ine                                             |     |  |
| Q.10             | Arrange the following                                                                                                | as stated.                                                                                                                             |                                                 | (2) |  |
|                  | a) in increasin                                                                                                      | g order of Ionic sizes                                                                                                                 |                                                 |     |  |
|                  | $Na^+$ ,                                                                                                             | <b>F</b> <sup>-</sup> , <b>O</b> <sup>2-</sup>                                                                                         |                                                 |     |  |
|                  | b) in increasin                                                                                                      | g order of electronegativity                                                                                                           |                                                 |     |  |

H, F, Cl

- Q.11 Write any four postulates of kinetic molecular theory of Gases. (2)
  Q.12 Write a point of similarity and a point of difference between hydrogen and halogen. (2)
- Q.13 a) Classify the following species as **nucleophile** and **electrophile**.

$$\mathbf{NH}_3$$
,  $\mathbf{H}^+$ ,  $\mathbf{AlCl}_3$ ,  $\mathbf{Cl}^-$ 

b) Arrange and write the following carbanions in increasing order of their stabilities.

Q.14 Answer the following with respect to the reaction given below.

 $\begin{array}{rcl} CH_3\text{-}CH_2\text{-}CH=CH_2 &+& HBr & \rightarrow & CH_3\text{-}CH_2\text{-}CH\text{-}CH_3 \\ & & & & & \\ & & & & Br \\ & & & & Compound \ \mathbf{A} \end{array}$ 

- a) Write the **type** of the above organic reaction.
- b) Write the structure of the position isomer of compound A and name the same.
- Q.15 Draw the following.
  - a) Lewis dot structure for  $C_2H_2$  Molecule
  - b) Orbital picture of Ethane Molecule.

#### **Section-C**

Q.16. Dihydrogen and Iodine react with each other to produce hydrogen iodide according to (3) the following chemical equation:

 $H_{2\,(g)}\ +\ I_{2(g)} \rightarrow 2HI_{(g)}$ 

Write the information available from the above balanced chemical equation.

Calculate the mass of **One atom of Iodine** (*Given atomic mass of Iodine=129 u*)

| Q.17. | Answer the following.                                                         |       |
|-------|-------------------------------------------------------------------------------|-------|
|       | a) What is <b>photoelectric</b> effect?                                       |       |
|       | b) Light emitted from a source has a wavelength of 490nm. Calculate frequency | v and |
|       | wave number of the light.                                                     |       |
| Q.18  | Answer the following.                                                         |       |
|       | a) Define <b>Heisenberg's uncertainty</b> principle.                          |       |
|       | b) Write electronic configuration for <b>Mn</b> (Z=25)                        |       |
|       | c) Draw a neat labelled diagram for $2p_x$ orbital.                           |       |

(2)

(2)

(2)

Q.19 Answer the following questions with respect to graph which shows The potential energy curve for the formation of  $H_2$  molecule as a function of internuclear distance of the H atoms.



- i. Name the theory that graph tries to explain.
- ii. Why the curve initially decreases when internuclear distance decreases?
- Why the curve shows high value of Potential energy below internuclear distance of 74 pm.
- iv. Label the "X" and "Y".
- Q.20 State the **Charles** law.

On hot days, you may have noticed that potato chip bags seem to "inflate", even though they have not been opened. If you have a 250 mL bag at a temperature of 19  $^{0}$ C, and you leave it in your car which has a temperature of  $60^{0}$ C, Calculate what will the new volume of the bag.

- Q.21 Define **Surface tension** and give reason for the following.
  - a) Viscosity of liquids decreases as the temperature rises.
  - b) Liquids at high altitudes boil at **lower temperatures** in comparison to that at sea level.

#### Q.22 Answer the following.

- a) Write a complete chemical reaction of hydrogen with halogen.
- b) Write one example each of ionic and covalent hydride.
- c) Write a method used to remove temporary hardness of water.
- Q.23 Answer the following.
  - a) Write the structural formula for **carboxylic** acid and **amine**.

b) Amongst the following organic compounds, select and name the aromatic **benzenoid compound.** 



(3)

(3)

(3)

(3)

### Section-D

## With respect to **Dipole moment**, answer the following questions.

a) Define Dipole moment.

Q.24

- b) Write how it is designated (Symbol) and what is its unit.
- c) Draw the structure of  $AlCl_3$  molecule and show the bond dipoles in it.
- d) Comment on net dipole moment in AlCl<sub>3</sub> with reason.

### OR

- Q.24 With respect to NH<sub>3</sub> (Ammonia) molecule answer the following.
  - a) Define Hybridization.
  - b) Name the type of Hybridization that Nitrogen atom has undergone.
  - c) Write the number of lone pairs and bond pairs on Nitrogen atom.
  - d) Draw the orbital picture and comment on its geometry.
- Q.25 Write the IUPAC name of the following.



#### OR

- Q.25 Write the structure for the following compounds.
  - a) 3-methylbutyne
  - b) Pentanenitrile
  - c) 2-ethylbutanamide
  - d) o-dibromobenzene

\*-----\*

(4)

(4)

(4)

(4)