	Shri Shantadurga Higher Secondary School, Bicholim Goa.			
Class: -)	(I Science Max Marks:- 55			
Dav: - T	uesday (Subject:-Chemistry) Date:- 18-10-2016			
Time: - 9	0.00 am. TO 11.30 am. ANSWER-KEY Duration: - 2 - Hours			
Total No	of Questions: -5 <u>First Terminal Examination- 2016</u> Total No Of Printed page	ges: 12		
Q No	INSTRUCTIONS:	Marks		
Q1A	Elements in the same group have same <u>Number of valence electrons</u>	1		
	# Density # Nuclear charge # Atomic radius # Number of valence electrons			
Q1B	Define the following terms and write their mathematical expression			
	a) Mole fraction			
	It is the ratio of number of moles of a particular component to the total number of moles of the solution. If a substance 'A' dissolves in substance 'B' and their number of moles are nA and nB respectively; then the mole fractions of A and B are given as			
	Mole fraction of AMole fraction of B $= \frac{No. of moles of A}{No. of moles of solution}$ $= \frac{No. of moles of B}{No. of moles of solution}$ $= \frac{n_A}{n_A + n_B}$ $= \frac{n_B}{n_A + n_B}$			
	b) Mass percentage			
	It is the ratio of mass of solute to that of solution (weight by weight or volume			
	by volume) multiplied by hundred. It is obtained by using the following relation:			
	Mass per cent = $\frac{\text{Mass of solute}}{\text{Mass of solution}} \times 100$ <u>c) Molality</u>			
	It is defined as the number of moles of solute present in 1 kg of solvent. It is denoted by m.			
	Thus, Molality (m) = $rac{ m No. of moles of solute}{ m Mass of solvent in kg}$			

Q1C	Calculate the mass of:-			
	a) One atom of Potassium			
	6.023×10^{23} atoms of potassium will weigh=19 grams			
	One atom of potassium will weigh=x gram			
	$X=1x19/6.023x10^{-23}$			
	$=3.15 \times 10^{23} \text{ gram}$			
	Mass one atom of Potassium= 3.15×10^{23} gram			
	a) One molecule of NH.			
	Molecular mass of $NH_2=17$ grams			
	6.023×10^{23} molecules of Ammonia will we	eigh=17 grams		
	One molecule of Ammonia will weigh=x	gram		
	$X=1\times17/6.023\times10^{-23}$			
	$=2.82 \times 10^{-23}$ gram			
	b) Mass one molecule of Ammonia	-2.82×10^{-23} gram		
01D	State the following	-2.02 X10 Etalli	3	
	6			
	1. First law of Thermodyna	mics		
	The energy of an isolated system is constant	ant.		
	It is commonly stated as the law of conse	rvation of energy i.e., energy can neither		
	be created nor be destroyed			
	2. Standard enthalpy of vap	orization		
	Amount of heat required to vaporize one	mole of a liquid at constant temperature		
	and under standard pressure (1bar) is call	ed its standard enthalpy of vaporization		
	or molar enthalpy of vaporization, $\Delta_{vap}H^0$			
	3. Hess's law of constant heat summation.			
	If a reaction takes place in several steps then its standard reaction enthalpy is the			
	sum of the standard enthalpies of the intermediate reactions into which the			
	overall reaction may be divided at the same temperature.			
O1E	Identify and group the following properties into intensive and extensive properties			
	(temperature , pressure , Mass , volume , enthalpy, viscosity)			
	intensive	extensive		
	Temperature , pressure & viscosity	Mass , volume , enthalpy		
		10		
Q 2 A	The maximum number of electrons accommodated in 3d orbital is10			
	# 3 # 10	# 14 # 30		
Q 2 B	Answer the following.		3	
	a) State Pauli's exclusion pr	inciple		
	No two electrons in an atom can have the same set of four quantum numbers.			
	Pauli exclusion principle can also be stated as : "Only two electrons may exist			
	in the same orbital and these electrons must have opposite spin."			

Q 2 D	Answer the following.		
	I. Define Electronegativity of an element A qualitative measure of the ability of an atom in a chemical compound to attract shared electrons to itself is called electronegativity .		
	II. The first ionization enthalpy of Oxygen is low compared to that of Nitrogen. Give reason.		
	atomic orbitals (Hund's rule) whereas in the oxygen atom, two of the four 2p-		
	electrons must occupy the same 2p-orbital resulting in increased electron-electron		
	repulsion. Consequently, it is easier to remove the fourth 2p-electron from oxygen		
	than it is, to remove one of the three 2p-electrons from nitrogen.		
Q 2 E	Answer the following.	2	
	I. Write two examples of species which are isoelectronic with Mg^{2+} Al^{+3} And O^{-2} 10 electrons		
	II. F ion has a larger radii than F atom. Give reason.		
	Anion has one or more electrons than its parent atom, resulting in an increased		
	repulsion among the electrons and a decrease in the effective nuclear charge. As a		
	result, the distance between the valence electrons and the nucleus is more in anions than in it's the parent atom. Hence, an anion is larger in radius than its		
	parent atom.		
03A	At constant volume, pressure of a fixed amount of a gas varies directly with the	1	
2012			
	temperature, 1s <u>Gay Lussac's law</u>		
	# Charles' law #Gay Lussac's law # Avogadro law # Boyle's law		
Q 3 B	Name the different types of van-dar-waals forces and write any three physical	3	
	properties of gaseous state.		
	a. dispersion forces or London forces,		
	b. dipole-dipole forces, and		
	c. dipole-induced dipole forces.		
	Physical properties of gaseous state are as follows .(any three) a. Gases are highly compressible.		
	b. Gases exert pressure equally in all directions.		
	c. Gases have much lower density than the solids and liquids. d. The volume and the shape of gases are not fixed. These assume volume and		
	shape of the container.		
	e. Gases mix evenly and completely in all proportions without any mechanical		
	aid		

Q 3 C	Derive Ideal gas equation.		
	The three Gas laws can be combined together in a single equation which is known as ideal gas equation.		
	At constant T and n ; $V \propto \frac{1}{P}$ Boyleis Law		
	At constant p and n ; $V \propto T$ Charlesí Law At constant p and T ; $V \propto n$ Avogadro Law Thus,		
	$V \propto \frac{nT}{p}$ (5.15)		
	$\Rightarrow V = R \frac{nT}{n} $ (5.16)		
	where R is proportionality constant. On rearranging the equation (5.16) we obtain pV = n RT(5.17)		
	R is called gas constant. It is same for all gases. Therefore it is also called Universal Gas Constant . Equation (5.17) is called ideal gas equation .		
03D	Solve the following.	3	
	1. It is hard to begin inflating a balloon. A pressure of 800.0 Kpa is required to initially inflate the balloon to 225.0 mL. What is the final pressure when the balloon has reached its capacity of 1.2 L?ANS:-P_2 = $[V_1][P_1]$ $[V_2]$ P_2 = $[0.225L][800.0 \text{ KPa}] = 150 \text{ KPa}$ $[1.2 \text{ L}]$		
	2. What is the temperature at which 80 cm ³ of a gas should be heated to increase its volume by 20% without changing the pressure? (<i>Given that the initial temperature of the gas</i> <i>is</i> $25^{\circ}C$)		
	Ans: The desired increase in the volume of the gas		
	$= 20\% \text{ of } 80 \text{ cm}^3 = \frac{80}{100} \times 20 = 16 \text{ cm}^3$		
	Final volume of the gas = $80 + 16 = 96 \text{ cm}^3$		
	$V_1 = 80 \text{ cm}^3$; $V_2 = 96 \text{ cm}^3$		
	$T_1 = 25^{\circ}C = 298 K$; $T_2 = ?$		
	Applying Charleslaw		
	$T_2 = \frac{V_2 T_1}{V_1} = \frac{96 \text{ cm}^3 \times 298 \text{ K}}{80 \text{ cm}^3} = 357.6 \text{ K or } 84.6^{\circ} \text{ C}$		

Q 5 A		The aromatic compound	among the following is]	Benzene	1
		≻ C	clohexene		
		≻ C	clopentene		
		➢ B	nzene		
		≻ C	clohexane		
Q 5 B	Answei	r the following.			2
	a. Write a point of difference between Homolytic fission and				
	Heterolytic fission.				
	A covalent bond can get cleaved either by : Homolytic cleavage and Heterolytic			/tic	
	cleavage In homolytic cleavage, one of the electrons of the shared pair in a covalent bond goes with each of the bonded atoms. A homolytic cleavage can be shown as:			5	
	Heat or Light				
		K A	Alkyl		
	In hete	rolytic cleavage the bo	tree radical t breaks in such a fashion	that the shared pair	of
	electror	is remains with one	of the fragments Thus, h	eterolytic cleavage	of
	bromon	nethane will give $^{+}CH_3$ at	d Br ^{$-$} as shown below.		
		H ₃ C	$\stackrel{f}{-} \operatorname{Br} \longrightarrow \operatorname{H_3C} + \operatorname{Br}$		
	b. Classify the given below species as Nucleophile and				
	electrophile				
	BF ₃ , H ₂ O, NH ₃ and H ⁺				
		Nucleophile	H ₂ O and NH	-3	
		Electrophile	BF_3 and H^+		
Q 5 C	Write an example representing below given isomerism.		3		
	i.	Position isomerism			
	For exar	nple, the molecular formula	C3H8O represents two alcohols:		
		OH			
	CH3C	H ₂ CH ₂ OH CH ₃ -CH	CH ₃		
	Prop	pan-1-ol Propan	2-ol		

Q 5 D	Write the structures for the following compounds by rewriting their IUPAC names			
	I. 3-ethyl-2-methylpentane	н н-с-н н-с-н н н н н-с-с-с-н н н н н-с-н н н н н-с-н н		
	II. 2,2-Dimethylpropane	СH ₃ СH ₃ -С-СH ₃ СH ₃		
	III. Cyclobutene			
	IV. Cyclopropane	\square		
Q 5 E	Write the general formula for the followin I. AldehydeCH II. CvanideCN	ng functional group	1	