Parvatibai Chowgule College of Arts & Science, Margao Goa.

(Higher Secondary Section) Class: - XI Science Max Marks:- 60 (Subject:-Chemistry) Day: - Saturday Date:- 3-11-2012 Duration: - 2 $\frac{1}{2}$ Hours Time: - 8.15 am. TO 10.45 am. **Total No of Questions: - 6** First Terminal Examination- 2012 **Total No Of Printed ages: 4** Marks Q No **INSTRUCTIONS:** (1) All questions are compulsory. (2) Answer each main question on a fresh page. (3) Figures to the right-indicate full marks. (4) Use of calculators is not permitted, however mathematical tables will be provided on request. Atomic masses & Constants:-H=1,Ca=40,N=14,O=16,F = 96500 C mol⁻¹, $N_A=6.023 \times 10^{23}$, $h=6.626 \times 10^{-34}$ Q1A Define the following and write their mathematical expression 3

- a) Mole fraction
- b) Mass percentage
- c) Molality

Q 1 B Dinitrogen and dihydrogen react with each other to produce ammonia according2 to the following chemical equation:

 $N_{2}(g) + 3H_{2}(g) \rightarrow 2NH_{3}(g)$

Write the information that is available from the above balanced chemical equation?

Q1C Write a point of difference between Molecular mass and Formula Mass giving one 2 example of each.

Q 1 D	Calculate the following		
	i.	Number of moles of carbon dioxide which contain 8g of oxygen	
	ii.	Numbers of moles present in 7.9 mg of calcium	
O 1 E	Draw	a flow sheet diagram showing classification of matter	1

Q 2 A	Answer the following	5
	(i) What sub shells are possible in $n = 3$ energy level?	
	(ii) How many orbitals of all kinds are possible in this level?	
Q 2 B	Write the electronic configurations of the following ions:	2
	(a) Na^+ (b) O^{2-}	
Q 2 C	How does Bohr's theory account for stability of an atom?	2
	OR	
Q 2 C	Define isobars and isotopes giving examples?	2
Q 2 D	Calculate the uncertainty in velocity of a cricket ball of mass 0.15 kg if its	2
	uncertainty in position is of the order of $1A^0$	
Q 2 E	Draw diagrams depicting the shapes of $1s$ and $2p_x$ orbital.	1
Q 3 A	Define the following terms	3
	a) Bond Length	
	b) Bond angle	
	c) Bond order	
Q 3 B	Explain why the net dipole moment in NH_3 is much higher than NF_3 ?	2
Q 3 C	Write the Lewis dot structure for each of the following molecules.	2
	1. H ₂ O	
	2. CO ₂	
Q 3 D	Write any two points of difference between Sigma and Pi bonds	2
Q 3 E	Draw the orbital picture of ethane molecule & show the type of hybridization	1
Q 4 A	Write any six postulates of Kinetic Molecular theory of gases	3
	OR	
Q 4 A	Answer the following	3

- i. Derive Ideal gas equation
- ii. State Daltons law of partial pressures

Q 4 C	At 27°C and 760 mm of Hg pressure a gas occupies 600 ml volume. What will be	2				
	its pressure at a height where temperature is 20° C and volume of the gas is 660 ml?					
OR						
Q 4 C	What is the temperature at which 80 cm^3 of a gas should be heated to increase its	2				
	volume by 20% without changing the pressure? (Given that the initial temperature					
	of the gas is 25°C)					
Q 4 D	Give reasons	2				
	1) Viscosity of liquids decreases with the increase in temperature.					
	2) Liquid drops have nearly spherical shape.					
Q 4 E	State Charles Law.	1				
Q 5 A	Define the following	3				
	a. Open system					
	b. Entropy					
	c. Intensive property					
Q 5 B	What are Dobereiner's triads? Explain these triads with suitable example.	2				
	OR					
Q 5 B	Differentiate between s and p block elements.	2				
Q 5 C	What do you mean by isoelectronic species? Which of the following are	2				
	isoelectronic species?					
	Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , S ²⁻ , Ar.					
Q 5 D	Give reasons.	2				
	a) There are only 18 elements in the 5th period.					
	b) Ionic radii of sodium ion are less than that of sodium atom.					
Q 5 E	Write the IUPAC name and symbol of an element whose atomic number 108.	1				

- **Q 6 A** Explain the following with examples
 - i. Position isomerism
 - ii. Inductive effect
 - iii. Heterolytic fission

Q 6 B Write the IUPAC names for the following compounds by rewriting the structures

- I. 4-Ethyl-1-fluoro-2-nitrobenzene
- II. 2,2-Dimethylpropane
- III. Cyclohexene

Q 6 B

IV. Cyclopropane

Q 6 C Write the bond line formulas for the following compounds

- a) Propan-2-ol
- b) 1,2-dimethylcyclohexane
- c) But-2-ene
- d) 2-methylpentane
- **Q 6 D** Differentiate between nucleophiles and electrophiles giving examples of each. **2**
- **Q 6 E** Draw the structural formula of 2,3 Dibromo -1 phenylpentane, **1**

2

2

2