

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Sum of the masses of all the atoms present in a formula unit of a compound \\
- Used for compounds whose constituent particles are ions \\
- Example - Formula mass of sodium chloride \((\mathrm{NaCl})\) \\
\(=\) Atomic mass of sodium + Atomic mass of chlorine \\
\(=23.0 \mathrm{u}+35.5 \mathrm{u}=>58.5 \mathrm{u}\)
\end{tabular} \& \\
\hline \begin{tabular}{l}
Q 1 D \\
Ans:-
\end{tabular} \& \begin{tabular}{l}
Calculate the following \\
i. Number of moles of carbon dioxide which contain 8 g of oxygen \\
ii. Numbers of moles present in 7.9 mg of calcium \\
I)Ans. \\
In \(\mathrm{CO}_{2}, 32 \mathrm{~g}\) of oxygen is present in 1 mole of \(\mathrm{CO}_{2}\) Therefore 8 g of oxygen is present in
\[
=\frac{1 \times 8}{32}=0.25 \mathrm{~mol} \mathrm{of} \mathrm{CO}_{2}
\] \\
ii)Ans.
\[
\text { Number of moles }=\frac{\text { massingrams }}{\text { atomic mass }}=\frac{7.9 \times 10^{-3}}{40}=1.975 \times 10^{-4}
\]
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
\[
\text { Q } 1 \mathbf{E}
\] \\
Ans:-
\end{tabular} \& Draw a flow sheet diagram showing classification of matter \& 1 \\
\hline Q 24

Ans:- \& | Answer the following: |
| :--- |
| (i) What sub shells are possible in $\mathrm{n}=3$ energy level? |
| (ii) How many orbitals of all kinds are possible in this level? |
| Ans. |
| (i)Subshells in $\mathrm{n}=3$ energy level |
| We know that the subshells are given by different values of ℓ. |
| For $\mathrm{n}=3$, the possible values of ℓ are 0,1 and 2 . |
| The corresponding subshells are: |
| $\ell=0$, s-subshell $\ell=1$, p-subshell $\ell=2$, d-subshell. |
| (ii) Number of orbitals |
| For $\mathrm{n}=3$, there are one s , three p and five d -orbitals. |
| This makes total of nine orbitals in $\mathrm{n}=3$ level. | \& (3) \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Q 2 B \\
Ans:-
\end{tabular} \& \begin{tabular}{l}
Write the electronic configurations of the following ions \& write the number of protons present in them. \\
(a) \(\mathrm{Na}^{+}\)(b) \(\mathrm{O}^{2-}\) \\
\(\mathrm{Na}^{+}=10\) electrons, \(\mathrm{EC}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{0} \quad\) or \([\mathrm{Ne}] 3 s^{0} \quad\) Protons \(=11\) \\
\(\mathrm{O}^{2-}=10\) electrons, \(\mathrm{EC}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{0} \quad\) or \(\quad[\mathrm{Ne}] 3 s^{0} \quad\) Protons \(=08\)
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
\[
\text { Q } 2 \mathrm{C}
\] \\
Ans:-
\end{tabular} \& \begin{tabular}{l}
How does Bohr's theory account for stability of an atom? \\
According to Bohr, as long as an electron remains in a particular permitted circular orbit or stationary state, it neither emits nor absorbs energy. As a result, an electron can not spiral down towards the nucleus loosing energy continuously (as per Maxwell's theory of electromagnetic radiation). This explains why atoms are stable and do not collapse due to electrostatic attraction between the nucleus and the electrons. \\
OR
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
\[
\text { Q } 2 \mathrm{C}
\] \\
Ans:-
\end{tabular} \& \begin{tabular}{l}
Define isobars and isotopes giving examples? \\
Isotopes are atoms of the same element having same atomic number but different mass numbers. They have similar chemical properties but different physical properties. \\
Examples. carbon atoms containing 6, 7 and 8 neutrons besides 6 protons are
\[
\left({ }_{6}^{12} \mathrm{C},{ }_{6}^{13} \mathrm{C},{ }_{6}^{14} \mathrm{C}\right)
\] \\
Isobars are atoms of different elements having same mass numbers (i.e. the sum of their Protons and Neutrons are same). \\
Examples. \({ }_{6}^{14} \mathrm{C}\) and \({ }_{7}^{14} \mathrm{~N}\).
\end{tabular} \& 2 \\
\hline Q 2 D

Ans:- \& | Calculate the uncertainty in velocity of a cricket ball of mass 0.15 kg if its uncertainty in position is of the order of $1 \mathrm{~A}^{0}$ |
| :--- |
| We know, $\Delta X . m \Delta V \geq h / 4 \pi$ |
| Hence, $\Delta V=6.626 \times 10^{-34} / 4 \times 3.14 \times 0.15 \times 10^{-10}=3.51 \times 10^{-24} \mathrm{~m} / \mathrm{s}$ | \& 2 \\

\hline | Q2E |
| :--- |
| Ans:- | \& Draw diagrams depicting the shapes of $\mathbf{1 s}$ and $\mathbf{2} \mathbf{p}_{\mathbf{x}}$ orbital. \& 1 \\

\hline
\end{tabular}

$\begin{array}{\|l} \hline \text { Q 3 A } \\ \text { Ans:- } \end{array}$	Define the following terms a) Bond Length Bond length is defined as the equilibrium distance between the nuclei of two bonded atoms in a molecule. Fig. The bond length in a covalent molecule $A B$. $R=r A+r B$ (R is the bond length and $r A$ and $r B$ are the covalent radii of atoms A and B respectively) b) Bond angle It is defined as the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. Bond angle is expressed in degree .For example $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in water can be represented as under : c) Bond order In the Lewis description of covalent bond, the Bond Order is given by the number of bonds between the two atoms in a molecule. The bond order, for example in H_{2} (with a single shared electron pair), in O_{2} (with two shared electron pairs) and in N_{2} (with three shared electron pairs) is 1,2,3 respectively. Similarly in CO (three shared electron pairs between C and O) the bond order is 3 . For N_{2}, bond order is 3	3

| Q 3 B | Explain why the net dipole moment in NH_{3} is much higher than NF_{3} ? | 2 |
| :--- | :--- | :--- | :--- |
| Ans:- | | |
| Both the molecules have pyramidal shape with a lone pair of electrons on nitrogen | | |
| atom. Although fluorine is more electronegative than nitrogen, the resultant | | |
| dipole moment of $\mathrm{NH} 3\left(4.90 \times 10^{-30} \mathrm{C} \mathrm{m}\right)$ is greater than that of $\mathrm{NF}_{3}\left(0.8 \times 10^{-30}\right.$ | | |
| C m). | | |
| This is because, in case of NH_{3} the orbital dipole due to lone pair is in the same | | |
| direction as the resultant dipole moment of the $\mathrm{N}-\mathrm{H}$ bonds, whereas in NF_{3} the | | |
| orbital dipole is in the direction opposite to the resultant dipole moment of the three | | |
| N-F bonds. The orbital dipole because of lone pair decreases the effect of the | | |
| resultant $\mathrm{N}-\mathrm{F}$ bond moments, which results in the low dipole moment of NF_{3} as | | |
| represented below | | |

	The following are the differences between sigma and pi-bonds:	
	Sigma (σ) Bond \quad Pi (п) Bond	
	$\begin{aligned} & \text { (a) It is formed by the end to end } \\ & \text { overlap of orbitals. }\end{aligned}$ $\begin{aligned} & \text { It is formed by the lateral overlap of } \\ & \text { orbitals. }\end{aligned}$	
	(b) The orbitals involved in the These bonds are formed by the overlap overlapping are $s-s, s-p$, or $p-p$. of $p-p$ orbitals only.	
	(c) It is a strong bond. \quad It is weak bond.	
	(d) The electron cloud is symmetrical The electron cloud is not symmetrical. about the line joining the two nuclei.	
	(e) It consists of one electron cloud, which is symmetrical about the internuclear axis. There are two electron clouds lying above and below the plane of the atomic nuclei.	
	(f) Free rotation about σ bonds ispossible.Rotation is restricted in case of pi- bonds.	
$\begin{array}{\|l\|} \hline \text { Q 3 E } \\ \text { Ans:- } \end{array}$	Draw the orbital picture of ethane molecule \& show the type of hybridization sp ${ }^{3}$ Hybridisation in $\boldsymbol{C}_{2} \boldsymbol{H}_{6}$ molecule: In ethane molecule both the carbon atoms assume $s p^{3}$ hybrid state. One of the four $s p 3$ hybrid orbitals of carbon atom overlaps axially with similar orbitals of other atom to form $s p^{3}-s p^{3}$ sigma bond while the other three hybrid orbitals of each carbon atom are used in forming $s p^{3}-s$ sigma bonds with hydrogen atoms Structure of Ethane molecule	1
$\begin{array}{\|l\|} \hline \text { Q4A } \end{array}$ Ans:-	Write any six postulates of Kinetic Molecular theory of gases 1. Gases are composed of a large number of particles that behave like hard, spherical objects in a state of constant, random motion. 2. These particles move in a straight line until they collide with another particle or the walls of the container. 3. These particles are much smaller than the distance between particles. Most of the volume of a gas is therefore empty space. 4. There is no force of attraction between gas particles or between the particles and the walls of the container. 5. Collisions between gas particles or collisions with the walls of the container are perfectly elastic. None of the energy of a gas particle is lost when it collides with another particle or with the walls of the container. 6. The average kinetic energy of a collection of gas particles depends on the	3

	temperature of the gas and nothing else. OR	
Q4A Ans:- Ans:-	Answer the following i. Derive Ideal gas equation The three Gas laws can be combined together in a single equation which is known as ideal gas equation. At constant \boldsymbol{T} and $\boldsymbol{n} ; \boldsymbol{V} \propto \frac{1}{\boldsymbol{p}}$ Boyleís Law At constant \boldsymbol{p} and $\boldsymbol{n} ; \boldsymbol{V} \propto \boldsymbol{T}$ Charlesí Law At constant \boldsymbol{p} and $\boldsymbol{T} ; \boldsymbol{V} \propto \boldsymbol{n}$ Avogadro Law Thus, $\begin{align*} & V \propto \frac{n T}{p} \tag{5.15}\\ \Rightarrow & V=\mathrm{R} \frac{n T}{p} \tag{5.16} \end{align*}$ where R is proportionality constant. On rearranging the equation (5.16) we obtain $\begin{equation*} p V=n R T \ldots \tag{5.17} \end{equation*}$ R is called gas constant. It is same for all gases. Therefore it is also called Universal Gas Constant. Equation (5.17) is called ideal gas equation. ii. State Daltons law of partial pressures Daltons law of partial pressures states that the total pressure exerted by the mixture of non-reactive gases is equal to the sum of the partial pressures of individual gases Mathematically, $\boldsymbol{p}_{\text {Total }}=p_{1}+p_{2}+p_{3}+\ldots \ldots .(\text { at constant } \boldsymbol{T}, \boldsymbol{V})$ where $\boldsymbol{p}_{\text {Total }}$ is the total pressure exerted by the mixture of gases and $\boldsymbol{p}_{1,}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}$ etc. are partial pressures of gases.	3
$\text { Q } 4 \text { B }$ Ans:-	Explain with a neat labeled diagram dispersion forces in non-polar molecules Atoms and nonpolar molecules are electrically symmetrical and have no dipole moment because their electronic charge cloud is symmetrically distributed. But a dipole may develop momentarily even in such atoms and molecules. This can be understood as follows. Suppose we have two atoms ' A ' and ' B ' in the close vicinity of each other (Fig. 5.1a). It may so happen that momentarily electronic charge distribution in one of the atoms, say ' A ' becomes unsymmetrical i.e., the charge cloud is more on one side than the other (Fig. 5.1 b and c). This results in the development of instantaneous dipole on the atom 'A' for a very short time. This instantaneous or transient dipole distorts the electron density of the other atom ' B ', which is close to it and as a consequence a dipole is induced in the atom ' B '. The temporary dipoles of atom ' A ' and ' B ' attract each other. Similarly temporary	2

	dipoles are induced in molecules also. This force of attraction was first proposed by the German physicist Fritz London, and for this reason force of attraction between two temporary dipoles is known as London force. Another name for this force is dispersion force. Atom B (a) (b) (c) Fig 5.1 Dispersion forces or London forces between atoms.	
Q 4 C	At $27^{\circ} \mathrm{C}$ and 760 mm of Hg pressure a gas occupies 600 ml volume. What will be its pressure at a height where temperature is $20^{\circ} \mathrm{C}$ and volume of the gas is 660 ml ? $\begin{aligned} & \mathrm{P}_{1}=760 \mathrm{~mm} \\ & \mathrm{~V}_{1}=600 \mathrm{ml} \\ & \mathrm{~T}_{1}=27^{\circ} \mathrm{c}=273+27=300 \mathrm{~K} \\ & \mathrm{P}_{2}=? \\ & \mathrm{~V}_{2}=660 \mathrm{~mL} \\ & \mathrm{~T}_{2}=20^{\circ} \mathrm{C}=273+20=293 \mathrm{~K} \end{aligned}$ Using relation: $\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$ $760 \times 600 / 300=P 2 \times 660 / 293$ $P_{2}=760 \times 600 \times 293 / 660 \times 300$ $P_{2}=675 \mathrm{~mm} .$ Its pressure at a height where temperature is $20^{\circ} \mathrm{C}$ and volume of the gas is 660 ml is 675 mm .	2
Q 4 C Ans:-	What is the temperature at which $80 \mathrm{~cm}^{3}$ of a gas should be heated to increase its volume by 20% without changing the pressure? (Given that the initial temperature of the gas is $25^{\circ} \mathrm{C}$) The desired increase in the volume of the gas	2

	$=20 \% \text { of } 80 \mathrm{~cm}^{3}=\frac{80}{100} \times 20=16 \mathrm{~cm}^{3}$ Final volume of the gas $=80+16=96 \mathrm{~cm}^{3}$ $\begin{aligned} & \mathrm{V}_{1}=80 \mathrm{~cm}^{3} ; \mathrm{V}_{2}=96 \mathrm{~cm}^{3} \\ & \mathrm{~T}_{1}=25^{\circ} \mathrm{C}=298 \mathrm{~K} ; \quad \mathrm{T}_{2}=? \end{aligned}$ Applying Charleslaw $\mathrm{T}_{2}=\frac{\mathrm{V}_{2} \mathrm{~T}_{1}}{\mathrm{~V}_{1}}=\frac{96 \mathrm{~cm}^{3} \times 298 \mathrm{~K}}{80 \mathrm{~cm}^{3}}=357.6 \mathrm{~K} \text { or } 84.6^{\circ} \mathrm{C}$	
Q 4 D Ans:- Ans:-	Give reasons 1) Viscosity of liquids decreases with the increase in temperature. Viscosity of liquids decreases as the temperature rises because at high temperature molecules have high kinetic energy and can overcome the intermolecular forces to slip past one another between the layers. 2) Liquid drops have nearly spherical shape. Liquid drops have nearly spherical shape due to the characteristic property of liquids, called surface tension. The lowest energy state of the liquid will be when surface area is minimum. Spherical shape satisfies this condition,	2
Q4E Ans:	State Charles Law. Charles Law states that pressure remaining constant, the volume of a fixed mass of a gas is directly proportional to its absolute temperature.	1
$\begin{array}{\|l\|} \hline \text { Q } 5 \text { A } \\ \text { Ans:- } \end{array}$	Define the following a. Open system A system in which, there is exchange of energy and matter between system and surroundings is defined as open system. b. Entropy Entropy can be thought of as a measure of the randomness of a system. c. Intensive property Those thermodynamic properties which do not depend on the quantity or size of matter present are known as intensive properties. For example temperature, density, pressure etc. are intensive properties	3
$\text { Q } 5 \text { B }$ Ans:	What are Dobereiner's triads? Explain these triads with suitable example. Classification of elements into groups and development of Periodic Law and Periodic Table are the consequences of systematizing the knowledge gained by a number	2

	Isoelectronic species have the same number of electrons. Number of electrons in sodium $(\mathrm{Na})=11$ Number of electrons in $\left(\mathrm{Na}^{+}\right)=10$ A positive charge denotes the loss of an electron. Similarly, Number of electrons in $\mathrm{K}^{+}=18$ Number of electrons in $\mathrm{Mg}^{2+}=10$ Number of electrons in $\mathrm{Ca}^{2+}=18$ A negative charge denotes the gain of an electron by a species. Number of electrons in sulphur $(S)=16$? Number of electrons in $\mathrm{S}^{2-}=18$ Number of electrons in argon (Ar) $=18$ Hence, the following are isoelectronic species: 1) Na^{+}and Mg^{2+} (10 electrons each) 2) $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{S}^{2-}$ and Ar (18 electrons each) Concept inight: Positive sign means the loss of electrons whereas negative sign means gain of electrons.	
$\begin{aligned} & \text { Q 5 D } \\ & \text { Ans:- } \end{aligned}$	Give reasons. a) There are only 18 elements in the 5th period. The fifth period begins with the filling of $5 f$ orbital and continues till the filling of sixth energy (6s) starts. The sub shells that follow up the filling pattern are $4 \mathrm{~d}, 5$ p, 6s... So we can say that the elements which involve filling of $5 s, 4 d$ and $5 p$ sub shell are accommodated in the fifth period. The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period. b) Ionic radii of sodium ion are less than that of sodium atom. The removal of an electron from an atom results in the formation of a cation A cation is smaller than its parent atom because it has fewer electrons while its nuclear charge remains the same. (the atomic radius of sodium is 186 pm compared to the ionic radius of 95 pm for Na^{+}.)	2
$\begin{array}{\|l} \hline \text { Q 5 E } \\ \text { Ans:- } \end{array}$	Write the IUPAC name and symbol of an element whose atomic number 108. The roots for the numbers 1,0 and 8 are Un, Nil and Oct respectively. So IUPAC name and symbol for the element are unnilotium and Uno respectively.	1

Q6A Ans:-	Explain the following with examples i. Position isomerism When two or more compounds differ in the position of substituent atom or functional group on the carbon skeleton, they are called position isomers and this phenomenon is termed as position isomerism. For example, the molecular formula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ represents two alcohols $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ ii. Inductive effect Polarisation of σ-bond caused by the polarisation of adjacent σ-bond is referred to as the inductive effect. Let us consider cholorethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right)$ in which the $\mathrm{C}-\mathrm{Cl}$ bond is a polar covalent bond. It is polarised in such a way that the carbon-1 gains some positive charge $\left(\delta^{+}\right)$and the chlorine some negative charge $\left(\delta^{-}\right)$. The fractional electronic charges on the two atoms in a polar covalent bond are denoted by symbol δ (delta) and the shift of electron density is shown by an arrow that points from δ^{+}to δ^{-}end of the polar bond In turn carbon-1, which has developed partial positive charge $\left(\delta^{+}\right)$draws some electron density towards it from the adjacent C-C bond. Consequently, some positive charge ($\delta \delta^{+}$) develops on carbon- 2 also, where $\delta \delta^{+}$symbolises relatively smaller positive charge as compared to that on carbon - 1. In other words, the polar $\mathrm{C}-\mathrm{Cl}$ bond induces polarity in the adjacent bonds. Such polarisation of σ-bond caused by the polarisation of adjacent σ-bond is referred to as the inductive effect. This effect is passed on to the subsequent bonds also but the effect decreases rapidly as the number of intervening bonds increases and becomes vanishingly small after three bonds. iii. Heterolytic fission A covalent bond can get cleaved either by : (i) heterolytic cleavage, or by (ii) hemolytic cleavage. In heterolytic cleavage, the bond breaks in such a fashion that the shared pair of electrons remains with one of the fragments. After heterolysis, one atom has a sextet electronic structure and a positive charge and the other, a valence octet with at least one lone pair and a negative charge. Thus, heterolytic cleavage of bromomethane will give $\mathrm{CH}_{3}{ }^{+}$and Br^{-}as shown below. $\mathrm{H}_{3} \mathrm{C} \stackrel{\curvearrowright}{\mathrm{Br}} \longrightarrow \mathrm{H}_{3} \stackrel{+}{\mathrm{C}}+\mathrm{Br}^{-}$	3

Q 6 B Arite the IUPAC names for the following compounds by rewriting the structures

Q6 D	Differentiate between nucleophiles and electrophiles giving examples of each. A reagent that brings an electron pair is known as nucleophile, and a reagent that takes away an electron pair is called as Electrophile. Exmples. Nucleophile among the following are : $\mathrm{HS}^{5}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}, \mathrm{NH}_{2}^{-}$ Electrophile among the following are : $\mathrm{BF}_{3}, \mathrm{NO}_{2}{ }^{-}$	$\mathbf{2}$
Q6 E	Draw the structural formula of 2,3-Dibromo -1-phenylpentane,	$\mathbf{1}$

@@@

