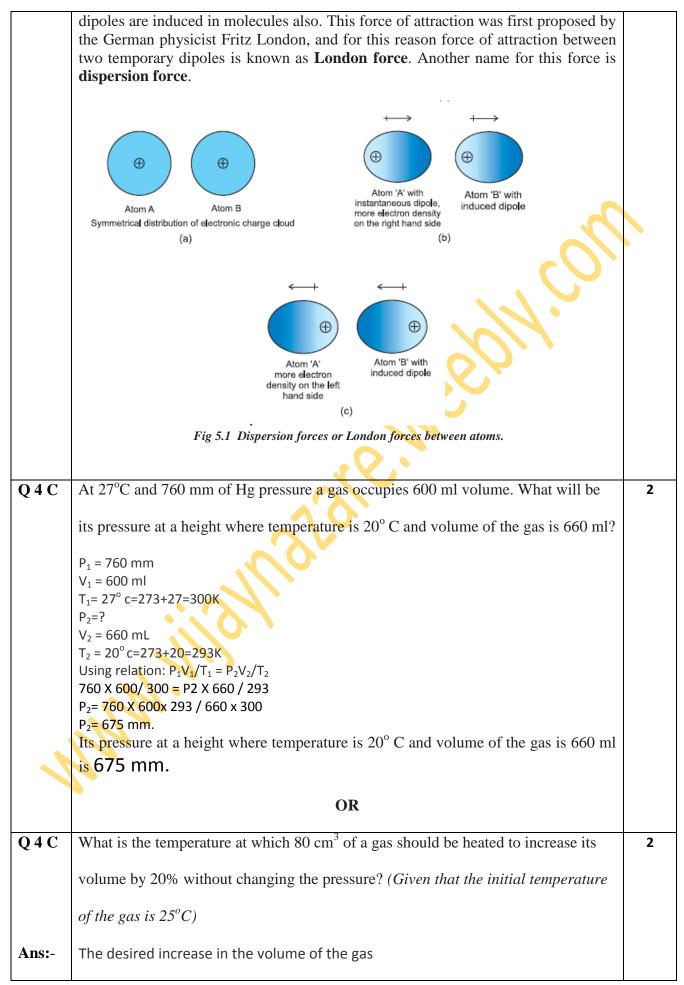

	Parvatibai Cho	wgule College of		Margao Goa.			
Class: - X	(I Science	(Higher Second	ary Section)	Max Marks:- 60			
Day: - Sa		(Subject:-Chem	uistry)	Date:- 3-11-2012			
-	.15 am. TO 10.45 am.	<u>ANSWER-KEY</u>		Duration: - 2 $\frac{1}{2}$ Hours			
	of Questions: - 6	First Terminal Examinati	on- 2012	Total No Of Printed a			
	- 						
Q No	INSTRUCTIONS:	(1) All questions a	re compulsory		Marks		
		(2) Answer each m		fresh paae.			
		(3) Figures to the					
		(4) Use of calculat					
		mathematical table	es will be provided	on request.			
		& Constants:-H=1,Ca=4	40,N=14,O=1 <mark>6</mark> ,F =	96500 C mol⁻¹,			
	$N_A=6.023 \times 10^{23}$,h	=6.626 x 10 ⁻³⁴	.00	·			
Q1A	Define the following	ng and write their mathe	ematical expression		3		
	a) Mole fraction	on					
	b) Mass percentage						
	c) Molality						
Ans:-	a) Mole fraction						
	It is the ratio of number of moles of a particular component to the total number of						
	moles of the solution. If a substance 'A' dissolves in substance 'B' and their						
	number of moles are nA and nB respectively; then the mole fractions of A and B are given as						
		action of A	Mole fraction of				
	=	lo.of moles of A f moles of solution	$=\frac{No.of mole}{No.of moles of}$				
	n		= <u>n_B</u>				
	$=\frac{1}{n_A}$		$n_A + n_B$				
	b) Mass percent	tage					
	It is the ratio of	mass of solute to that of	solution (weight by	weight or volume			
	by volume) mu	ltiplied by hundred.					
	It is obtained by us	ing the following relation	1:				

	Mass per cent = Mass of solute Mass of solution	
	<u>c) Molality</u>	
	It is defined as the number of moles of solute present in 1 kg of solvent. It is denoted by m.	
	Thus, Molality (m) = $rac{ ext{No. of moles of solute}}{ ext{Mass of solvent in kg}}$	
Q 1 B	Dinitrogen and dihydrogen react with each other to produce ammonia according	2
	to the following chemical equation:	
	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	
	Write the information that is available from the above balanced chemical	
	equation?	
Ans:-	From the above balanced chemical equation, the following information is obtained:	
	Tion the above balanced chemical equation, the following information is obtained.	
	• $N_2(g) + H_2(g)$ are reactants & $NH_3(g)$ is a product.	
	• One mole of $N_2(g)$ reacts with three moles of $H_2(g)$ to give two moles	
	of $NH_3(g)$	
	• One molecule $N_2(g)$ reacts with three molecules of $H_2(g)$ to give two moles of $NH_3(g)$	
	• 28 g of $N_2(g)$ reacts with $(3 \times 2) = 6$ g of $H_2(g)$ to give $(2 \times 17 = 34)$ g	
	of $NH_3(g)$	
	• 22.4 L of $N_2(g)$ reacts with (3 × 22.4) L=67.2 L of $H_2(g)$ to give (2 ×	
	22.4) L=44.8L of NH_3 (g).	
Q1C	Write a point of difference between Molecular mass and Formula Mass giving one	2
	example of each.	
Ans:-	Molecular Mass	
	Sum of the atomic masses of all the elements present in a molecule	
	• Example – Molecular mass of $CO_2 = 1 \times Atomic mass of$	
	carbon + 2 × Atomic mass of oxygen = $(1 \times 12.011 \text{ u}) + (2 \times 16.00 \text{ u})$	
	= 12.011 u + 32.00 u	
	= 44.011 u	
	Formula Mass:	


Q 2 B	Write the electronic configurations of the following ions & write the number of	2	
	protons present in them.		
Ans:-	(a) Na^+ (b) O^{2-}		
	$Na^+=10 \text{ electrons}, EC= 1s^22s^22p^63s^0 \text{ or } [Ne]3s^0 \underline{Protons}= 11$		
	$O^{2-}=10$ electrons, EC= 1s ² 2s ² 2p ⁶ 3s ⁰ or [Ne]3s ⁰ <u>Protons</u> = 08		
Q 2 C	How does Bohr's theory account for stability of an atom?	2	
Ans:-	According to Bohr, as long as an electron remains in a particular permitted circular orbit or stationary state, it neither emits nor absorbs energy. As a result, an electron can not spiral down towards the nucleus loosing energy continuously (as per Maxwell's theory of electromagnetic radiation). This explains why atoms are stable and do not collapse due to electrostatic attraction between the nucleus and the electrons.		
Q 2 C	Define isobars and isotopes giving examples?	2	
Q2C	Denne isobals and isolopes giving examples?	Z	
Ans:-	Isotopes are atoms of the same element having same atomic number but different mass numbers. They have similar chemical properties but different physical properties. Examples. carbon atoms containing 6, 7 and 8 neutrons besides 6 protons are $\binom{12}{6}C, \frac{13}{6}C, \frac{14}{6}C$ Isobars are atoms of different elements having same mass numbers (i.e. the sum of their Protons and Neutrons are same). Examples. $\binom{14}{7}C$ and $\binom{14}{7}N$.		
Q 2 D	Calculate the uncertainty in velocity of a cricket ball of mass 0.15 kg if its	2	
	uncertainty in position is of the order of $1A^0$		
Ans:-	We know, $\Delta X. \ m\Delta V \ge h/4\pi$		
	Hence, ΔV = 6.626 x 10 ⁻³⁴ / 4 x 3.14 x 0.15 x 10 ⁻¹⁰ = 3.51 x 10 ⁻²⁴ m/s		
Q 2 E	Draw diagrams depicting the shapes of $1s$ and $2p_x$ orbital.	1	
Ans:-			

Q 3 B	Explain why the net dipole moment in NH ₃ is much higher than NF ₃ ?	2
Ans:-	Both the molecules have pyramidal shape with a lone pair of electrons on nitrogen atom. Although fluorine is more electronegative than nitrogen, the resultant dipole moment of NH3 (4.90×10^{-30} C m) is greater than that of NF ₃ (0.8×10^{-30} C m). This is because, in case of NH ₃ the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of the N – H bonds, whereas in NF ₃ the orbital dipole is in the direction opposite to the resultant dipole moment of the three N–F bonds. The orbital dipole because of lone pair decreases the effect of the resultant N – F bond moments, which results in the low dipole moment of NF ₃ as represented below	
	$\frac{1}{H}$ $\frac{1}$	
Q 3 C	Write the Lewis dot structure for each of the following molecules.	2
Ans:-	1. H_2O $H \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0}} H$ $2e^- & 8e^- & 2e^-$ H atoms attain a duplet of electrons and O, the octet 2. CO_2 $\underbrace{\stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0}} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0} \stackrel{?}{\underbrace{0} \stackrel{?}{0$	
Q 3 D	Write any two points of difference between Sigma and Pi bonds	2
Ans:-		

	Sigma (σ) Bond	Pi (π) Bond	
	(a) It is formed by the end to end overlap of orbitals.	It is formed by the lateral overlap of orbitals.	
	(b) The orbitals involved in the overlapping are s-s, s-p, or p-p.	These bonds are formed by the overlap of $p-p$ orbitals only.	
	(c) It is a strong bond.	It is weak bond.	
	(d) The electron cloud is symmetrical about the line joining the two nuclei.	The electron cloud is not symmetrical.	
	(e) It consists of one electron cloud, which is symmetrical about the internuclear axis.		
	(f) Free rotation about σ bonds is possible.	Rotation is restricted in case of pi- bonds.	
		N	
Q 3 E	Draw the orbital picture of ethane molecu	le & show the type of hybridization	1
	sigma bonds with hydrogen atoms H 1 $\sigma_{sp3,sp3}$ H 1 $\sigma_{sp3,sp3}$ H 1 $\sigma_{sp3,sp3}$	$H = 109^{\circ}28' + H = 100^{\circ}28' + H = $	
	Structure of E	Ethane molecule	
Q 4 A Ans:-	Write any six postulates of Kinetic Molec		3
1	spherical objects in a state of cons	line until they collide with another	
	3. These particles are much smaller t	han the distance between particles. Most	
		empty space. ween gas particles or between the particles	
	• •	r collisions with the walls of the container energy of a gas particle is lost when it	
	collides with another particle or w		

	temperature of the gas and nothing else.				
	OR				
Q4A	Answer the following	3			
Ans:-	i. Derive Ideal gas equation				
	The three Gas laws can be combined together in a single equation which is known as ideal gas equation.				
Ans:-	At constant T and n ; $\mathbf{V} \propto \frac{1}{p}$ Boyleis Law				
	At constant p and n ; $V \propto T$ Charlesí Law At constant p and T ; $V \propto n$ Avogadro Law				
	Thus,				
	$V \propto \frac{nT}{p} $ (5.15) $\Rightarrow V = R \frac{nT}{p} $ (5.16)				
	$\Rightarrow V = \mathbf{R} \frac{nT}{p} \tag{5.16}$				
	where R is proportionality constant. On rearranging the equation (5.16) we obtain pV = n RT(5.17)				
	R is called gas constant. It is same for all gases. Therefore it is also called Universal Gas Constant . Equation (5.17) is called ideal gas equation .				
	ii. State Daltons law of partial pressures				
	Daltons law of partial pressures states that the total pressure exerted by the mixture of non-reactive gases is equal to the sum of the partial pressures of individual gases Mathematically,				
	$p_{\text{Total}} = p_1 + p_2 + p_3 + \dots$ (at constant T, V) where p_{Total} is the total pressure exerted by the mixture of gases and p_1, p_2, p_3 etc. are partial pressures of gases.				
Q4B	Explain with a neat labeled diagram dispersion forces in non-polar molecules	2			
Ans:-	Atoms and nonpolar molecules are electrically symmetrical and have no dipole moment because their electronic charge cloud is symmetrically distributed. But a dipole may develop momentarily even in such atoms and molecules. This can be				
	understood as follows. Suppose we have two atoms 'A' and 'B' in the close vicinity of each other (Fig.				
	5.1a). It may so happen that momentarily electronic charge distribution in one of the atoms, say 'A' becomes unsymmetrical <i>i.e.</i> , the charge cloud is more on one				
	side than the other (Fig. 5.1 b and c). This results in the development of				
	instantaneous dipole on the atom 'A' for a very short time. This instantaneous or transient dipole distorts the electron density of the other atom 'B', which is close to it and as a consequence a dipole is induced in the atom 'B'.				
	The temporary dipoles of atom 'A' and 'B' attract each other. Similarly temporary				

	$= 20\% \text{ of } 80 \text{ cm}^3 = \frac{80}{100} \times 20 = 16 \text{ cm}^3$	
	Final volume of the gas = $80 + 16 = 96$ cm ³	
	$V_1 = 80 \text{ cm}^3$; $V_2 = 96 \text{ cm}^3$	
	$T_1 = 25^{\circ}C = 298 K$; $T_2 = ?$	
	Applying Charleslaw	
	$T_2 = \frac{V_2 T_1}{V_1} = \frac{96 \text{ cm}^3 \times 298 \text{ K}}{80 \text{ cm}^3} = 357.6 \text{ K or } 84.6^{\circ} \text{ C}$	
Q 4 D	Give reasons	2
	1) Viscosity of liquids decreases with the increase in temperature.	
Ans:-	Viscosity of liquids decreases as the temperature rises because at high temperature molecules have high kinetic energy and can overcome the intermolecular forces to slip past one another between the layers.	
Ans:-	2) Liquid drops have nearly spherical shape.	
	Liquid drops have nearly spherical shape due to the characteristic property of liquids, called surface tension . The lowest energy state of the liquid will be when surface area is minimum.	
	Spherical shape satisfies this condition,	
Q 4 E	State Charles Law.	1
Ans:-	Charles Law states that pressure remaining constant, the volume of a fixed mass	
	of a gas is directly proportional to its absolute temperature.	
Q 5 A	Define the following	3
Ans:-	a. Open system	
	A system in which, there is exchange of energy and matter between system	
	and surroundings is defined as open system.	
	b. Entropy	
	Entropy can be thought of as a measure of the randomness of a system.	
	c. Intensive property	
	Those thermodynamic properties which do not depend on the quantity or size	
	of matter present are known as intensive properties.	
	For example temperature, density, pressure etc. are intensive properties	
Q 5 B	What are Dobereiner's triads? Explain these triads with suitable example.	2
Ans:-	Classification of elements into groups and development of Periodic Law and Periodic Table are the consequences of systematizing the knowledge gained by a number	

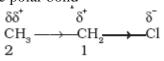
	The German of the idea of tre among the ph (Triads). In ea had an atomic two (Table 3.1 of the other tw This Dobereir	ends among p hysical and ch ch case, he n c weight abou 1). Also the pr wo members.	roperties of e emical proper oticed that th it half way be operties of th	elements. By 1 ties of severa e middle elen tween the ato ne middle eler	829 he noted I groups of th nent of each c omic weights o ment were in l	l a similarity ree elements of the Triads	
	Examples of [Dobereiner's	triads			<u>ک</u>	
	Element	Atomic weight	Element	Atomic weight	Element	Atomic weight	
	Li Na	7 23	Ca Sr	40 88	CI Br	35.5 80	
	К	39	Ba	137 OR	87	127	
Q 5 B	Differentiate b	between s and	l p block elem	ents.			2
Ans:-	s block elementsp block elementsi) The general configuration of s-block elements is ns1-2i) The general electronic configuration of p block elements is ns2np1-6ii) They are soft metals.ii) Most of them are non-metals.iii) The compounds of s-block elements are predominantly ionic except lithium and beryllium which forms covalent compounds.iii) They are soft metals.						
Q 5 C	and +2.	w oxidation st		states.	ow variable ox		2
Ans:-	What do you mean by isoelectronic species? Which of the following are isoelectronic species? Na^+ , K^+ , Mg^{2+} , Ca^{2+} , S^{2-} , Ar.						

Isoelectronic species have the same number of electrons. Number of electrons in sodium (Na) = 11 Number of electrons in (Na ⁺) = 10 A positive charge denotes the loss of an electron. Similarly, Number of electrons in K ⁺ = 18 Number of electrons in Mg ²⁺ = 10 Number of electrons in Ca ²⁺ = 18 A negative charge denotes the gain of an electron by a species.	
Number of electrons in $(Na^+) = 10$ A positive charge denotes the loss of an electron. Similarly, Number of electrons in $K^+ = 18$ Number of electrons in $Mg^{2+} = 10$ Number of electrons in $Ca^{2+} = 18$	
A positive charge denotes the loss of an electron. Similarly, Number of electrons in K ⁺ = 18 Number of electrons in Mg ²⁺ = 10 Number of electrons in Ca ²⁺ = 18	
Similarly, Number of electrons in $K^+ = 18$ Number of electrons in $Mg^{2+} = 10$ Number of electrons in $Ca^{2+} = 18$	
Number of electrons in $K^+ = 18$ Number of electrons in $Mg^{2+} = 10$ Number of electrons in $Ca^{2+} = 18$	
Number of electrons in Mg ²⁺ = 10 Number of electrons in Ca ²⁺ = 18	
Number of electrons in Ca ²⁺ = 18	
A negative that ge denotes the gain of an election by a species.	
Number of electrons in sulphur $(S) = 16$	
? Number of electrons in $S^{2^{-}} = 18$	
Number of electrons in argon (Ar) = 18	
Hence, the following are isoelectronic species:	
1) Na ⁺ and Mg ²⁺ (10 electrons each)	
 K⁺, Ca²⁺, S²⁻ and Ar (18 electrons each) 	
Concept inight: Positive sign means the loss of electrons whereas negative sign means gain of electrons.	
Q 5 D Give reasons.	
Ans:- a) There are only 18 elements in the 5th period.	
The fifth period begins with the filling of 5f orbital and continues till the filling of	
sixth energy (6s) starts. The sub shells that follow up the filling pattern are 4d, 5p,	
6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are	
6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub	
6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are	
6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there	
6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period.	
 6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period. b) Ionic radii of sodium ion are less than that of sodium atom. The removal of an electron from an atom results in the formation of a cation A cation is smaller than its parent atom because it has fewer electrons while its 	
 6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period. b) Ionic radii of sodium ion are less than that of sodium atom. The removal of an electron from an atom results in the formation of a cation A cation is smaller than its parent atom because it has fewer electrons while its nuclear charge remains the same. (the atomic radius of sodium is 186 pm compared to the ionic radius of 95 pm for Na⁺.) 	
 6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period. b) Ionic radii of sodium ion are less than that of sodium atom. The removal of an electron from an atom results in the formation of a cation A cation is smaller than its parent atom because it has fewer electrons while its nuclear charge remains the same. (the atomic radius of sodium is 186 pm compared 	
 6s So we can say that the elements which involve filling of 5s, 4d and 5p sub shell are accommodated in the fifth period .The total number of orbitals which these sub shell can have is nine and these orbitals can accommodate 18 electrons. So there are 18 elements in the fifth period. b) Ionic radii of sodium ion are less than that of sodium atom. The removal of an electron from an atom results in the formation of a cation A cation is smaller than its parent atom because it has fewer electrons while its nuclear charge remains the same. (the atomic radius of sodium is 186 pm compared to the ionic radius of 95 pm for Na⁺.) 	

Q 6 A Explain the following with examples

Ans:- i. Position isomerism

When two or more compounds differ in the position of substituent atom or functional group on the carbon skeleton, they are called position isomers and this phenomenon is termed as position isomerism. For example, the molecular formula C_3H_8O represents two alcohols


CH ₂ CH ₂ CH ₂ OH	CH _o -CH-CH _o
Propan-1-ol	Propan-2-ol
110pan-1-01	110pan-2-01

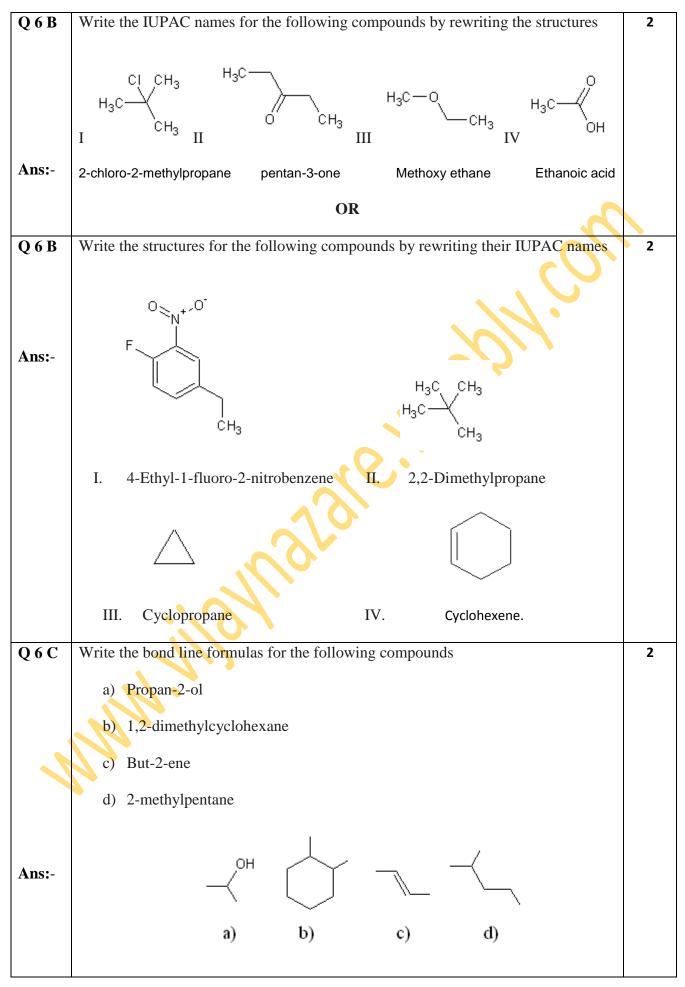
OH

ii. Inductive effect

Polarisation of σ -bond caused by the polarisation of adjacent σ -bond is referred to as the **inductive effect**.

Let us consider cholorethane (CH₃CH₂Cl) in which the C-Cl bond is a polar covalent bond. It is polarised in such a way that the carbon-1 gains some positive charge (δ^+) and the chlorine some negative charge (δ^-). The fractional electronic charges on the two atoms in a polar covalent bond are denoted by symbol δ (delta) and the shift of electron density is shown by an arrow that points from δ^+ to δ^- end of the polar bond

In turn carbon-1, which has developed partial positive charge (δ^+) draws some electron density towards it from the adjacent C-C bond. Consequently, some positive charge ($\delta\delta^+$) develops on carbon-2 also, where $\delta\delta^+$ symbolises relatively smaller positive charge as compared to that on carbon – 1. In other words, the polar C – Cl bond induces polarity in the adjacent bonds. Such polarisation of σ -bond caused by the polarisation of adjacent σ -bond is referred to as the **inductive effect**. This effect is passed on to the subsequent bonds also but the effect decreases rapidly as the number of intervening bonds increases and becomes vanishingly small after three bonds.


iii. Heterolytic fission

A covalent bond can get cleaved either by : (i) *heterolytic cleavage*, or by (ii) *hemolytic cleavage*.

In *heterolytic cleavage*, the bond breaks in such a fashion that the shared pair of electrons remains with one of the fragments. After heterolysis, one atom has a sextet electronic structure and a positive charge and the other, a valence octet with at least one lone pair and a negative charge. Thus, heterolytic cleavage of bromomethane will

give CH_3^+ and Br⁻ as shown below.

 $H_{3C} \xrightarrow{f} Br \longrightarrow H_{3}C + Br$

Q 6 D	Differentiate between nucleophiles and electrophiles giving examples of each.	2
	A reagent that brings an electron pair is known as nucleophile, and a reagent that takes away an electron pair is called as Electrophile. Exmples. Nucleophile among the following are : HS ⁻ , C ₂ H ₅ O ⁻ , NH ₂ ⁻ Electrophile among the following are : BF ₃ , NO ₂ ⁺	
Q 6 E	Draw the structural formula of 2,3 - Dibromo -1 - phenylpentane,	1
	\xrightarrow{Br}_{Br}	