Shri Shantadurga Higher Secondary School, Bicholim-Goa. Final Examination March-2018

Std: XI Science
Date: 26/03/2018

Answer Key
Chemistry

Max Marks : 55
Duration: 150 Minutes

Instructions:-

1. All questions are compulsory; however question 21, 26, and 27 has internal choice.
2. Use of calculator is not permitted, however logarithmic table will be provided on request.
3. Every Question should be attempted only once.

> Section-A consists of 9 questions of 1 mark each.
> Section-B consists of 10 questions of 2 marks each.
> Section-C consists of 6 questions of 3 marks each.
> Section-D consists of 2 questions of 4 marks each.

	Section-A	
Q.1.		(1)
Q. 2	The chemical formula of the compound formed when sodium reacts with oxygen is \qquad $\mathbf{N a}_{2} \underline{O}$ $\mathrm{a}_{2} \underline{\mathrm{O}^{-}}$ $\# \mathrm{NaO} \quad \# \mathrm{Na}_{3} \mathrm{O}_{2} \quad \# \mathrm{Na}_{2} \mathrm{O}_{2} \# \mathrm{Na}_{2} \mathrm{O}$	(1)
Q.3.	The oxidation state of manganese in KMnO_{4} is \qquad \# +5 \# +7 \# +2 \# +4	(1)
Q.4.	Within isomers of alkanes, as the branching increases boiling point _ Decreases \#Remains unchanged \#Increases \#Decreases \#First increases and then decreases	(1)
Q.5.	The Enthalpy of a system is represented by \underline{H} $\# \Delta H$ $\# \mathrm{E}$ $\# \Delta \mathrm{~S}$ $\#$	(1)
Q.6.	Draw the pH Scale and label Acidic, Basic and Neutral. pH Scale	(1)
Q. 7	Write a balanced chemical reaction illustrating a disproportionation redox reaction. The decomposition of hydrogen peroxide is a familiar example of the reaction, where oxygen experiences disproportionation $\begin{array}{lc} +1-1 & +1-2 \end{array}$ Here the oxygen of peroxide, which is present in -1 state, is converted to zero oxidation state in O_{2} and decreases to -2 oxidation state in $\mathrm{H}_{2} \mathrm{O}$.	(1)
Q. 8	Draw and name any two isomers of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$	(1)

	1,2-dibromobenzene 1,3-dibromobenzene 1,4-dibromobenzene OR o-dibromobenzene m-dibromobenzene p-dibromobenzene	
Q. 9	Draw the Energy level diagram (Enthalpy change) for Endothermic reaction and write the expression for Enthalpy change.	(1)
	Section-B	(2)
Q. 10	Write the conjugate bases for the following Brönsted acids: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{HCO}_{3}{ }^{-1}$ and HNO_{3} Ans: $\mathrm{OH}^{-}, \mathrm{NH}_{2}{ }^{-}, \mathrm{CO}_{3}{ }^{-2}$ and $\mathrm{NO}_{3}{ }^{-}$	(2)
Q. 11	State the first law of thermodynamics and name the instrument used to measure the internal energy change that occurs in a system. The energy of an isolated system is constant. OR Energy can neither be created nor be destroyed but it can be transferred from one form in to another Bomb Calorimeter/Calorimeter	(2)
Q. 12	A flask having a volume of 250.0 mL and containing air is heated at $100^{\circ} \mathrm{C}$ and sealed. Then the flask is cooled to $25^{\circ} \mathrm{C}$, immersed in water and opened. What volume of water will be drawn back into the flask? (assuming the pressure constant) Ans. Formula: V1/T1 =V2/T2 Given that $\mathrm{V}_{1}=250 \mathrm{ml}$ $V_{2}=?$ $\mathrm{T}_{1}=(100+273) \mathrm{K}=373 \mathrm{~K}, \mathrm{~T}_{2}=25^{\circ} \mathrm{C}=(25+273)=298 \mathrm{~K}$ Applying Charles law $\begin{aligned} & \frac{\mathrm{V} 1 / \mathrm{T} 1}{\mathrm{~T} 2}=\mathrm{V} 2 \\ & \frac{250 \times 298}{373} \end{aligned}$ $=199.74 \mathrm{ml}$ water will be drawn back into the flask.	(2)
Q. 13	Answer the following with respect to Beryllium: (i) Write a polymeric chain structure of its compound. (ii) Why does Be does not impart any characteristic colour to the flame? Ans: The electrons in beryllium are too strongly bound to get excited by flame. Hence, this element do not impart any colour to the flame.	(2)

$\left.\begin{array}{|l|l|l|l|}\hline \text { Q.14 } & \begin{array}{l}\text { Write any four points of similarities between Lithium and Magnesium. } \\ \text { (i) Both lithium and magnesium are harder and lighter than other elements in the }\end{array} \\ \text { respective groups. } \\ \text { (ii) Lithium and magnesium react slowly with water. Their oxides and hydroxides are } \\ \text { much less soluble and their hydroxides decompose on heating. Both form a nitride, }\end{array}\right]$ (2)

| Q.17. | Name the type of hybridisation formed when one 2 s and two 2 p orbital overlap and
 Draw the geometry of this hybrid orbitals.
 ANS: $\mathbf{S p}^{2}$ hybridisation | (2) |
| :--- | :--- | :--- | :--- | :--- |

	$\begin{gathered} \mathrm{K}_{\text {eq }}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{(0.15)^{2}}{(0.75)^{2}(0.30)}=0.13 \\ \text { OR } \end{gathered}$	
Q. 21	Write a point of difference between Homogenous and Heterogeneous equilibria and calculate Kc for the following reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})$ Given equilibrium concentrations of $\mathbf{N}_{\mathbf{2}}=3.0 \times 10^{-3} \mathbf{M}, \mathbf{O}_{\mathbf{2}}=4.2 \times 10^{-3} \mathrm{M} \text { and } \mathbf{N O}=2.8 \times 10^{-3} \mathrm{M} \text { in a sealed vessel at } 800 \mathrm{~K}$ Solution:	(3)
Q. 22	State the Hess's Law of Constant Heat Summation and Calculate ΔH_{1} for the following reaction between sulphur and oxygen which is exothermic in nature. In the direct one step preparation, change in enthalpy ie $\Delta \mathrm{H}-\mathbf{9 4 . 4 5} \mathbf{K c a l} / \mathbf{m o l}$. $\mathrm{S}+3 / 2 \mathbf{O}_{2} \rightarrow \mathrm{SO}_{3}$ In this example formation of sulphur trioxide takes place in two steps: In the first step sulphur reacts with oxygen to produce sulphur dioxide $\mathbf{S}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{S O}_{\mathbf{2}} \quad \Delta \mathrm{H}_{1}=\ldots ? \quad \mathrm{Kcal} / \mathrm{mol}$ In the second step $\mathbf{S O}_{\mathbf{2}}$ reacts with more oxygen to produce $\mathbf{S O}_{\mathbf{3}}$ $\mathrm{SO}_{2}+\mathbf{1 / 2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} \quad \Delta \mathrm{H}_{2}=-23.49 \mathrm{Kcal} / \mathrm{mol}$ Hess's Law states that the change in enthalpy accompanying a chemical reaction is independent of the pathway between initial and final states. OR If a reaction takes place in several steps then its standard reaction enthalpy is the sum of the standard enthalpies of the intermediate reactions into which the overall reaction may be divided at the same temperature. $\begin{array}{\|l} \text { Formula: } \Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2} \\ -94.45 \mathrm{Kcal} / \mathrm{mol}=\Delta \mathrm{H}_{1}+(-23.49 \mathrm{Kcal} / \mathrm{mol}) \\ \Delta \mathrm{H}_{1}=\Delta \mathrm{H}-\Delta \mathrm{H}_{2} \\ \Delta \mathrm{H}_{1}=-94.45 \mathrm{Kcal} / \mathrm{mol}-(-23.49 \mathrm{Kcal} / \mathrm{mol}) \\ \Delta \mathrm{H}_{1}=-94.45 \mathrm{Kcal} / \mathrm{mol}+23.49 \mathrm{Kcal} / \mathrm{mol} \\ \Delta \mathrm{H}_{1}=-70.96 \mathrm{Kcal} / \mathrm{mol} \end{array}$	(3)
Q. 23	The standard reduction electrode potential of Ni and Fe are given below $\mathrm{Ni}^{2+} / \mathrm{Ni}=-0.25 \mathrm{~V}$ and $\mathrm{Fe}^{3+} / \mathrm{Fe}=-0.04 \mathrm{~V}$ (i) Draw a neat labelled diagram of an electrochemical cell with the reference to the given values.	(3)

	(ii) Write the anodic and the cathodic reaction for the same. Anodic reaction: $\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}-$ Cathodic reaction : $2 \mathrm{Fe}^{3+}+2 \mathrm{e}-\rightarrow 2 \mathrm{Fe}^{2+}$	
Q. 24	Write the complete labelled chemical equation to carry out the following conversions (i) Bromoethane to Butane $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+2 \mathrm{Na}+\mathrm{BrC}_{2} \mathrm{H}_{5} \xrightarrow{\text { dry ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}$ Bromoethane n-Butane (ii) Benzene to Nitrobenzene (iii)2-Methylpropane to 2-Methylpropan-2-ol $\begin{array}{ll} \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH} & \xrightarrow[\text { Oxidation }]{\mathrm{KMnO}_{4}} \\ \text { 2-Methylpropane } & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \\ \text { 2-Methylpropan-2-ol } \end{array}$	(3)
Q. 25	Answer the following; (i) Name the major and minor product obtained on reaction of hydrogen bromide with propene. 1-Bromopropane (Reaction not required) Major product: 2-bromopropane \& Minor product: 1-bromopropane (ii) Draw and label Newmann Projections for the two conformations of Ethane.	(3)

(ii) Write a chemical reaction for the preparation of benzene by any one

	(iv)Draw the structure of Diborane.	
Q. 26	With respect to group 14 elements answer the following questions; (i) Write a Balanced chemical equation showing production of water gas $\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \xrightarrow{473-1273 \mathrm{~K}} \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ Water gas (ii) Draw the structure of a silicate unit (iii) Explain why Tetrachlorides of p- block are easily hydrolysed by water? Ans: Tetrachlorides of p-block are easily hydrolysed by water because the central atom can accommodate the lone pair of electrons from oxygen atom of water molecule in d orbital (iv) Write any two uses of Zeolites. - Zeolites are widely used as a catalyst in petrochemical industries for cracking of hydrocarbons and isomerisation, e.g., ZSM-5 (A type of zeolite) used to convert alcohols directly into gasoline. - Hydrated zeolites are used as ion exchangers in softening of "hard" water.	(4)
Q. 27	Write complete reaction for the following: (i) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{~A}+\mathrm{B}$ (ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{O}_{3} \longrightarrow \mathrm{~A} \xrightarrow{\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}} \mathrm{B}$ (iii) $\left[\mathrm{CH}_{3} \mathrm{CBr}=\mathrm{CHBr}\right]$ Ans: $\quad \mathbf{A}=\begin{gathered}\text { l, } 2 \text {-Dibromopropene }\end{gathered}$ and $\quad \mathbf{B}=1,1,2,2$-Tetrabromopropane	(4)

	(iv) OR	
Q. 27	Write complete reaction for the following: (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} \xrightarrow{\text { Anhy. } \mathrm{AlCl}_{3} / \mathrm{HCl}} \mathrm{A}+\mathrm{B}$ (ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}+[\mathrm{O}] \xrightarrow{\text { dil } \mathrm{KMnO}_{4}} \mathrm{~A}+\mathrm{B}$ $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$ Ans: $\mathbf{A}=$ Propane-1,2-diol and $\mathbf{B}=$ Ethanal (iv) Hexachlorobenzene $\left(\mathrm{C}_{6} \mathrm{Cl}_{6}\right)$	(4)

