

Unit VIII: d and f Block Elements Syllabus

- General introduction, electronic configuration, occurrence and characteristics of transition metals,
- general trends in properties of the first row transition metals – metallic character, ionization
- enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial
- compounds, alloy formation. Preparation and properties of K₂Cr₂O₇ and KMnO₄.
- Lanthanoids: electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction.

Actinoids: Electronic configuration, oxidation states.

	Repres	entative ents				р		table.s	wf					-		element NUMBE		Noble
	GR.OT	BER					1 H								18 0 2			
_1		2					$1s^4$				13	14	15	16	17	He		
Γ'.	IA	ILA									ШΒ	IV B	VB	VI B	VII B	$-1s^{2}$		
	3	4				<i>d</i> -1	ransitio	n eleme	ants		5	6	7	8	9	10		
2	Li	E.e 2x ²	_			— GF	OUP	NUMBE	ur —	_	$\frac{B}{2s^2 2t^2}$	C C	$\frac{N}{2s^2 2p'}$	0 a da d	F	Ne		
	2s ¹ 11	12		_	_						13	$\frac{2s^2 2p^2}{14}$	15	$\frac{2s^2 2p^4}{16}$	$\frac{2s^2 2p^2}{17}$	$\frac{2s^2 2p^6}{18}$		
≝ 3	Na	Mg	3 III A	4 5 6 7 8 9 10 11 1 IVA VA VIA VIIA ← VIII → IB D										Si	Р	S	α	Ar
B	3x ⁴	332			-	-	-					пв	$3s^3y^1$	$-3s^23p^2$	38 ² 3p ²	$3x^{2}3p^{4}$	38'3p ⁵	$-3s^2 3p^6$
NG ,	19	20 Ca	21	22 Ti	23	24	25	26 E-	27	28	29 Cm	30 Z-	31	32	33	34 Sa	35	36 Kr
PERIOD NUMBER	$\frac{K}{4s^{1}}$	Ca 45 ²	$\frac{Sc}{3d^{4}4s^{1}}$	$\frac{11}{3d^44x^2}$	$\frac{V}{3d^24s^2}$	$\frac{Cr}{3d^4a^4}$	Mn 34'4s'	Fe 3d ⁴ 4s ²	Co 3d ¹ 4s ²	Ni $3d^4s^2$	Cu 344s'	Zn 3d ³ d ²	Ga 4/ ³ 4/ ³	$Ge_{4s^2 4p^2}$	As 4¢4ø	Se 4s ² 4p ⁴	$\operatorname{Br}_{4g^2 4g^3}$	$4s^34p^8$
0	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
BH 3	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
E.	581	$-5s^{2}$	$-4d^{3}5s^{2}$	$4d^45d^3$	4d ⁴ 5s ¹	-44 ⁶ 5s ¹	$-4d^{4}Ss^{2}$	48.55	$4d^45s^4$	4 <i>d</i> ¹⁰	$-4d^{10}5s^{1}$	$-4d^{10}5s^2$	$-5s^25q^4$	$-5s^25p^2$	- 58 ³ 5p ²	$-5s^25p^4$	- इत्ते इत्ते	$5s^25p^0$
	55	56	57										81	82	83	84	85	86
6	Ċs 6d	Ba_{6s^3}	La* 5d*6s ²	HI IA W KC US IF Pt AU I									$\frac{1}{6s^2s^4}$	$\frac{Pb}{6s^26p^2}$	$\operatorname{Bi}_{6s^26s^3}$	Po 63 ² 69 ⁴	$\operatorname{At}_{6s^2 t p^{\dagger}}$	$\frac{Rn}{6\sigma^26\rho^6}$
	87	88	89	104	105	106	107	108	109	110	111	112	03.00	114	10.00	03.00	03.69	on ob
L7	Fr 7s ⁱ	Ra 7x ⁴	Ac** 6d7s1	Rf	Db	Sg	Bh	Hs	Mt	Ds	Unu	Uub	-	Uuq	-	Uuh	-	-

f- linner transition elements

. *	- 58	- 59	60	61	62	63	64	65	- 66 -	-67	68	- 69	70	71
Länthanoids 4/ "5d ⁸⁴ 6s"	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
47 5/2 08	4/5d 6s2	4/3d6r	4/*5d*6x*	$4/^{2}Sd^{2}6c^{2}$	10 201 002	4/3/66 ²	47 30 03	4/3/362	41 30 05	4f ⁴¹ 5d ⁴ 6i ²	4/**3d 6s²	4""3 <i>d</i> 6°		41 [*] 5d ⁴ 6; ³
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
**Actino ds	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
5f*6d**7?	$5f^{0}6d^{2}7s^{2}$	$5f^{2}5d^{2}7s^{2}$	5/6d ¹ 7s ²	$5f^{4}6d^{4}7c^{2}$			$5f''6d^47s^2$							5f ⁴⁴ 6d ⁴⁵ 1s ²

d Block Elements

1			<i>d-</i> 1	ransitio	n eleme	ants			1
			— GF	OUP	NUMBE	9R —			-
3 111 A	4 IV A	5 V A	6 VIA	7 VII A	8 ←	9 - 7111 -		ll IB	12 11 B
21 Sc 3d ⁴ 4s ⁴	22 Ti 3d ⁴ 4d	23 V 3d ² 4s ¹	24 Cr 3/4z	25 Mn 3ď4s	26 Fe 3d ⁴ 4s ²	27 Co 1/4/4/	28 Ni 3d ⁴ 4s ²	29 Cu 3d ⁴ s ¹	30 Zn 3ď4/
39 Y 4d ¹ 5s ²	40 Zr 4d ⁴ 5s ³	41 Nb 4d ⁴ 5s ¹	42 Mo 44/52	43 Tc 4d ⁴ 5s ²	44 Ru 4d ² 58	45 Rh 4d ⁴ 5s ¹	46 Pd 4 <i>d</i> "	47 Ag 4d ⁴⁵ 5	48 Cd 4d [#] 5s ²
57 La*	72 Hf	73 Ta 5464	74 W 5476/	75 Re 5d 6d	76 Os 5d ⁸ 6s ²	77 Ir :d'6s ²	78 Pt 54763	79 Au 5d ⁴ 6s ¹	80 Hg 54*6*
89 Ac [*] * 6d [*] 7s ²	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Uau	112 Uub

- The names transition metals and inner transition metals are often used to refer to the elements of d-and fblocks respectively.
- There are mainly three series of the transition metals,
- 3d series (Sc to Zn),
- 4d series (Y to Cd) and
- 5d series (La to Hg, omitting Ce to Lu).
- The fourth 6d series which begins with Ac is still incomplete.
- The two series of the inner transition metals, (4f and 5f) are known as lanthanoids and actinoids respectively.

- Transition element is defined as the one which has incompletely filled *d* orbitals in its ground state or in any one of its oxidation states.
- Zinc, cadmium and mercury of group 12 have full d¹⁰ configuration in their ground state as well as in their common oxidation states and hence, are not regarded as transition metals.
- Various precious metals such as silver, gold and platinum and industrially important metals like iron, copper and titanium form part of the transition metals.

d and f block elements

Electronic Configurations of the d-Block Elements

 general the electronic configuration of these elements is

▶ (n-1)d¹⁻¹⁰ns¹⁻²

- The (n-1) stands for the inner d orbitals which may have one to ten electrons and the outermost ns orbital may have one or two electrons.
- However, this generalisation has several exceptions because of very little energy difference between (n-1)d and ns orbitals.
- Furthermore, half and completely filled sets of orbitals are relatively more stable.

Table 8.1: Outer Electronic Configurations of the Transition Elements (ground state)

					1st Se	ries				
	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Z	21	22	23	24	25	26	27	28	29	30
4s	2	2	2	1	2	2	2	2	1	2
зd	1	2	3	5	5	6	7	8	10	10

					2nd S	eries				
	Y	Zr	Nb	мо	те	Ru	Rh	Pđ	Ag	Cđ
Z	39	40	41	42	43	44	45	46	47	48
5s	2	2	1	1	1	1	1	0	1	2
4d	1	2	4	5	6	7	8	10	10	10

					3rd Se	ries				
z	La 57	Нf 72	Ta 73	W 74	Re 75	0s 76	lr 77	Pt 78	Au 79	Hg 80
6s	2	2	2	2	2	2	2	1	1	2
5d	1	2	3	4	5	6	7	9	10	10

					4th Se	ries				
	Ac	RÍ	Db	Sg	вһ	Hs	Mt	Ds	Rg	Uub
Z	89	104	105	106	107	108	109	110	111	112
78	2	2	2	2	2	2	2	2	1	2
6đ	1	2	з	4	5	6	7	8	10	10

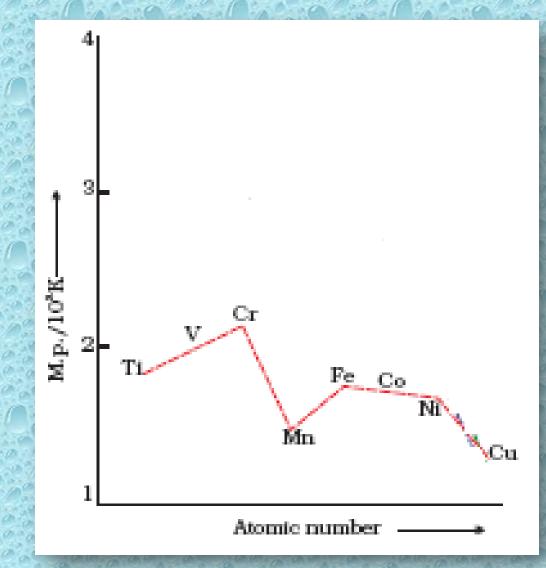
Q. Why Zn, Cd and Hg are not regarded as transition elements?

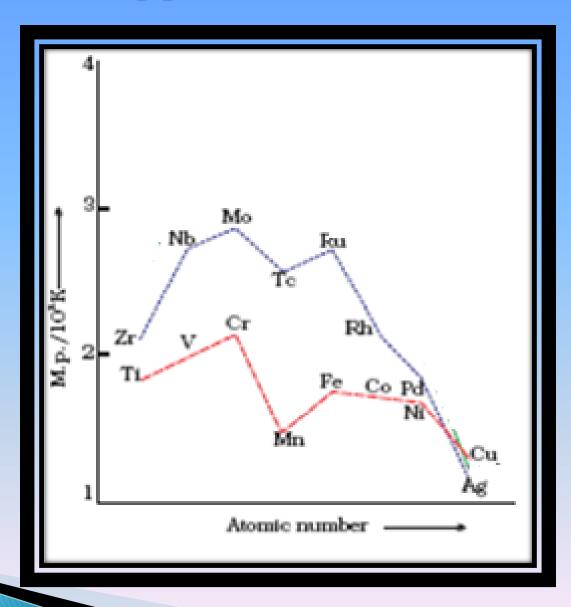
Ans.The electronic configurations of Zn, Cd and Hg are represented by the general formula

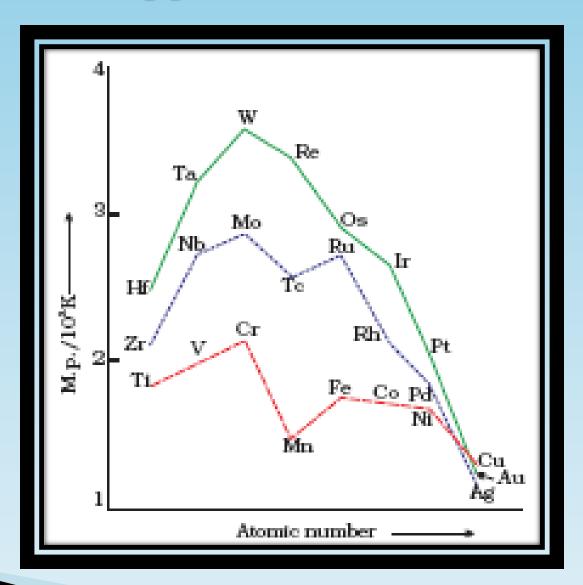
 $(n-1)d^{10}ns^{2}$.

- The orbitals in these elements are completely filled in the ground state as well as in their common oxidation states.
- Therefore, they are not regarded as transition elements.

General Properties of the

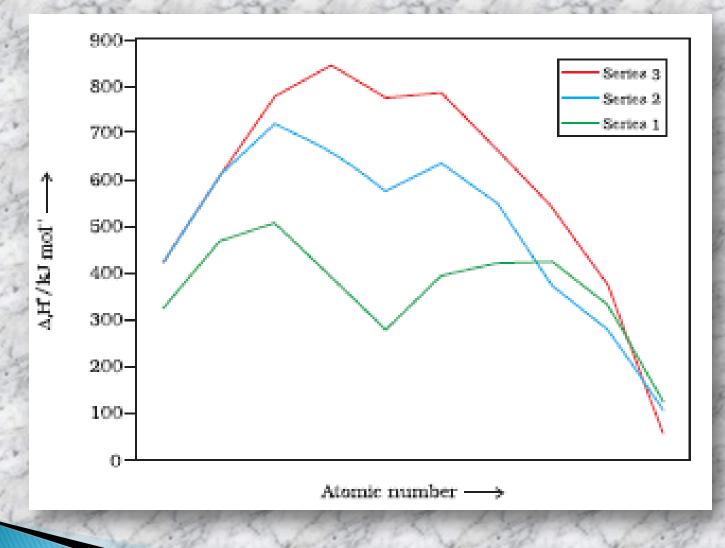

Transition Elements (d-Block)


- Nearly all the transition elements display typical metallic properties such as
- high tensile strength,
- ductility
- malleability,
- high thermal and electrical conductivity and
- metallic lustre.
- With the exceptions of Zn,Cd, Hg and Mn, they have one or more typical metallic structures at normal temperatures.


Lattice Structures of Transition Metals

Se	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
hep (bee)	hcp (bec)	bec	bee (bee, eep)	X (hcp)	bee (hep)	ccp	сер	eep	X (hcp)
Y	Zr	Nb	Мо	Te	Ru	Rh	Pd	Ag	Cd
hep (bee)	hep (bee)	bec	bec	hcp	hcp	сер	ccp	сер	X (hcp)
La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
hep (cep,bec)	hcp (bcc)	bec	bec	hep	hcp	сср	ccp	сср	х

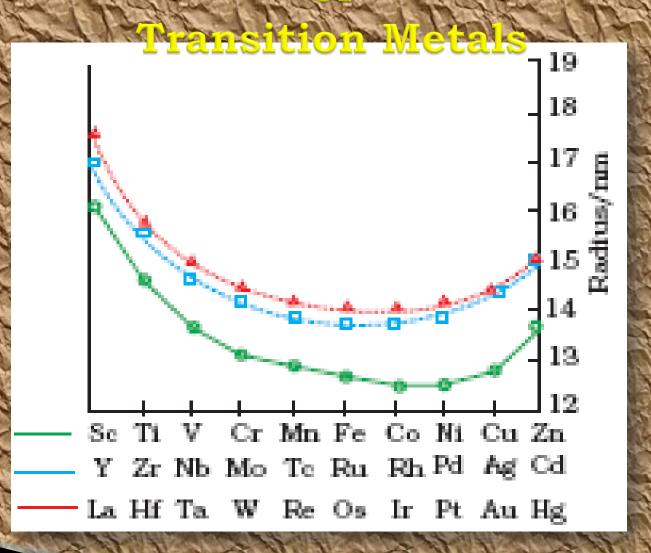
(bcc = body centred cubic; hcp = hexagonal close packed; ccp = cubic close packed; X = a typical metal structure).


- The transition metals (with the exception of Zn, Cd and Hg) are very much hard and have low volatility.
- Their melting and boiling points are high.
- High M.P and B.P Due to strong metallic bond and the presence of half filled d-orbitals
- Involvement of greater number of electrons from (n-1)d in addition to the ns electrons in the inter atomic metallic bonding.
- Because of stronger interatomic bonding =High enthalpy of atomisation =transition elements have high M.P and B.P

- In moving along the period from left to right, the M.P of these metals first NCREASES to MAXIMUM and the DECREASES regularly towards the end of the period.
- melting points of these metals rise to a maximum at d⁵ except for anomalous values of Mn and Tc and fall regularly as the atomic number increases.

TRENDS OF M.P OF 3- d, 4-d AND 5-d TRANSITION METALS

- The strength of interatomic bonds in transition elements is roughly related to the <u>number of half</u> <u>filled d- orbitals</u>
- In the beginning the <u>no. of half filled d- orbitals</u> increases till the middle of the period causing increase in strength of interparticle bonds But thereafter the pairing of electrons in d – orbitals occurs and the no. of half filled orbitals decreases. which also cause decrease in M.P


Trends in enthalpies of atomisation of transition elements

- 1. Greater the number of valence electrons, stronger the inter atomic attraction, <u>hence stronger bonding</u> between atoms resulting in higher enthalpies of atomization.
- 2. metals of the second and third series have greater enthalpies of atomization than the corresponding elements of the first series

- Why do the transition elements exhibit higher enthalpies of atomisation?
- Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction and hence stronger bonding between atoms resulting in higher enthalpies of atomisation.

- In any row the melting points of these metals rise to a maximum at d5 except for anomalous values of Mn and Tc and fall regularly as the atomic number increases.
- They have high enthalpies of atomisation which are shown in previous slide.
- The maxima at about the middle of each series indicate that one unpaired electron per *d* orbital is particularly favourable for strong interatomic interaction.
- In general, greater the number of valence electrons, stronger is the resultant bonding.

mation in Acomic and Lonic S

d and f block elements

Atomic and ionic radii

- The Atomic/ionic radii first DECREASES till the middle, becomes almost constant and then NCREASES towards the end of the period.
- New electron enters a *d* orbital each time the nuclear charge increases by unity, But the shielding effect of a *d* electron is not that effective, hence the net electrostatic attraction between the nuclear charge and the outermost electron increases and the ionic radius decreases

- However the increased nuclear charge is partly cancelled by the increased screening effect of electrons in the d-orbitals of penultimate shell.
- When the increased nuclear charge and increased
 Screening effect balance each other, the atomic radii becomes almost constant.
- Increase in atomic radii towards the end may be attributed to the <u>electron – electron repulsion</u>.
- In fact the pairing of electrons in d orbitals occurs after d⁵ configuration.
- The repulsive interaction between the paired electron causes Increase in Atomic/ ionic radii

- However the increased nuclear charge is partly cancelled by the increased screening effect of electrons in the d – orbitals of penultimate shell.
- When the increased nuclear charge and increased Screening effect balance each other, the atomic radii becomes almost constant.
- Increase in atomic radii towards the end may be
- attributed to the electron electron repulsion.
- In fact the pairing of electrons in d orbitals occurs after d5 configuration.
- The repulsive interaction between the paired electron causes Increase in Atomic/ ionic radii

- There is increase from the first (3d) to the second (4d) series of the elements.
- But the radii of the third (5d) series are virtually the same as 4d
- This is due to the intervention of the 4f orbital which must be filled before the 5d series of elements begin.
- There is a steady decrease in atomic radii from La due to the poor shielding of inner core electrons (4f) is known lanthanoid contraction.

Ionisation Enthalpies

- Due to an increase in nuclear charge there is an increase in ionisation enthalpy along each series of the transition elements from left to right.
- Ionisation enthalpies give some guidance concerning the relative stabilities of oxidation states.
- Although the first ionisation enthalpy, in general, increases, the magnitude of the increase in the second and third ionisation enthalpies for the successive elements, in general, is much higher.
- Mostly IEI<IE2 <IE3 in each group</p>

Ionisation Enthalpies Element Zn Sc. Cr Fe Co Cu Atomic number $3d^{1}4s^{2}$ $3d^{2}4s^{2}$ $3d^{3}4s^{2}$ $3d^{6}4s^{1}$ $3d^{6}4s^{2}$ $3d^{6}4s^{2}$ $3d^{7}4s^{2}$ $3d^{8}4s^{2}$ $3d^{10}4s^{1}$ $3d^{10}4s^{2}$ M ionisation enthalpy/AH/KJ mol $\Delta_{\!i}\!H^\theta$ $\Delta_i H^{\theta}$ Δ_{H}^{ℓ} II

The increase in IE is primarily due to increase in nuclear charge.

 As the transition elements involve the gradual filling of (n-1)d orbitals, the <u>effect of</u> increase in nuclear charge is partly cancelled by the increase in screening effect.

 Consequently, the increase in I.E along the periods of d – block elements is very small

Oxidation States

Oxidation States of the first row Transition Metals

Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
	+2	+2	+2	+2	+2	+2	+2	+1	+2
+3	+3	+3	+3	+3	+3	+3	+3	+2	
	+4	+4	+4	+4	+4	+4	+4		
		+5	+5	+5					
			+6	+6	+6				
				+7					

The elements which give the greatest number of oxidation states occur in or near the middle of the series. Manganese, for example, exhibits all the oxidation states from +2 to +7.

Thermochemical data (kJ mol-1) for the first row Transition Elements and the Standard Electrode Potentials for the Reduction of MII to M

Element (M)	$\mathbf{A}, \mathbf{H}^{\Theta}$ (M)	≜, H [⊕]	$\mathbf{A}_{1}\mathbf{H}_{2}^{\Theta}$	${\color{black} \blacktriangle_{hpd} H^{\ominus}(M^{2+})}$	E ⁰ /V
Ti	469	661	1310	-1866	-1.63
v	515	648	1370	-1895	-1.18
Cr	398	653	1590	-1925	-0.90
Mn	279	716	1510	-1862	-1.18
Fe	418	762	1560	-1998	-0.44
Co	427	757	1640	-2079	-0.28
Ni	431	736	1750	-2121	-0.25
Cu	339	745	1960	-2121	0.34
Zn	130	908	1730	-2059	-0.76

The stability of the half-filled d sub-shell in Mn^{2+} and the completely filled d¹⁰ configuration in Zn^{2+} are related to their E⁰ values, whereas E⁰ for Ni is related to the highest negative $\Delta_{hvd}H^0$.

Trends in the M³⁺/M²⁺ Standard Electrode Potentials

Element		Sc	Тİ	v	Cr	Mn	Fe	C0	Nİ	Cu	Zn
Standard electrode	Ma+/M		1.49	1 10	0.00	1.16	0.44	0.20	0.25	+0.34	0.79
potential E ⁰ /V		_					+0.77			+0.34	-0.76

The low value for Sc reflects the stability of Sc^{3+} which has a noble gas configuration.

The highest value for Zn is due to the removal of an electron from the stable d^{10} configuration of Zn^{2+} .

The comparatively high value for Mn shows that $Mn^{2+}(d^5)$ is particularly stable, whereas comparatively low value for Fe shows the extra stability of Fe³⁺ (d^5).

 \Box The comparatively low value for V is related to the stability of V²⁺

Trends in Stability of Higher Oxidation States

Formulas of Halides of 3d Metals

Oxidation Number									
	TIX4 TIX8 TIX2	VF5 VX4 VXa VX2	CrF ₆ CrF ₅ CrX4 CrX2 CrX2	MnF4 MnF2 MnX2	FeX_2^1 FeX_2	CoF ₂ CoX ₂	NiX2	CuX2 ^{II} CuX ^{III}	ZnX ₂

Key: $X = F \rightarrow I$; $XI = F \rightarrow Br$; XII = F, CI; $XIII = CI \rightarrow I$

Oxides of 3d Metals

Ozidation	Groups									
Number	3	4	5	6	7	8	9	10	11	12
+ 7					Mn_2O_7					
+6				CrO ₂						
+ 5			V_2O_5							
+ 4		TiO ₂	V_2O_4	CrO ₂	MnO_2					
+ 3	Sc_2O_3	Ti ₂ O ₃	V_2O_2	Cr_2O_3	Mn_2O_2	Fe_2O_3				
					Mn ₃ O ₄	Fe ₃ O ₄	Co_2O_4			
+ 2		TiO	vo	(CrO)	MnO	FeO	C00	NiO	CuO	ZnO
+ 1									$\mathrm{Cu}_2\mathrm{O}$	
 mixed oxide 	5									

The highest oxidation number in the oxides coincides with the group

number and is attained in Sc_2O_3 to Mn_2O_7 .

Chemical Reactivity and E⁰ Values

- Transition metals vary widely in their chemical reactivity.
- Many of them are sufficiently electropositive to dissolve in mineral acids,

Although a few are 'noble'—that is, they are unaffected by simple acids.

Magnetic Properties

- When a magnetic field is applied to substances, mainly two types of magnetic behaviour are observed: diamagnetism and paramagnetism
- **Diamagnetic** substances are repelled by the applied field while the **paramagnetic** substances are attracted.
- Substances which are attracted very strongly are said to be ferromagnetic. In fact, ferromagnetism is an extreme form of paramagnetism.
- Many of the transition metal ions are paramagnetic.
- Paramagnetism arises from the presence of unpaired electrons,
- Each such electron having a magnetic moment associated with its spin angular momentum and orbital angular momentum.

Magnetic moment

The magnetic moment is determined by the number of unpaired electrons and is calculated by using the 'spinonly' formula, i.e.,

• μ = n(n+2)

where **n** is the number of unpaired electrons and **µ** is the magnetic moment in units of Bohr magneton (BM). A single unpaired electron has a magnetic moment of **1.73** Bohr magnetons (BM).

Magnetic moment

- The magnetic moment increases with the increasing number of unpaired electrons.
- Thus, the observed magnetic moment gives a useful indication about the number of unpaired electrons present in the atom, molecule or ion
- 1. Calculate the magnetic moment of a divalent ion in aqueous solution if its atomic number is 25.
- Ans:

μ = 5(5+2)
= 5.92BM

Magnetic Moments

Table S.7: Calculated and Observed Magnetic Moments (BM)											
Ion	Configuration	Unpaired	Magnetic moment								
		electron(s)	Calculated	Observed							
Sc ³⁺	3d ⁰	0	0	0							
Tî ^a	3ď ¹	1	1.73	1.75							
'TI ²⁺	3d ²	2	2.84	2.76							
V ²⁺	3d ⁶	3	3.87	3.86							
Cr ²⁺	3ď*	4	4.90	4.80							
Mn ²⁺	3d ⁶	5	5.92	5.96							
Fe ²⁺	зď	4	4.90	5.3 - 5.5							
Co2+	3ď	3	3.87	4.4 - 5.2							
Ni ²⁺	зď	2	2.84	2.9 - 3, 4							
Cu ²⁺	3a ^e	1	1.73	1.8 - 2.2							
Zn²⁺	3d ^{to}	0	0								

Formation of Coloured Ions

Colours of some of the first row transition metal ions in aqueous solutions. From left to right: V⁴⁺, V³⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺ and Cu²⁺.

Colours of Some of the First Row (aquated) Transition Metal Ions

Configuration	Example	Colour
3ď⁰	Sc ³⁺	colourless
3d°	TI4*	colourless
3d1	Tia≁	purpie
3d ¹	V4+	blue
3ď²	V ^a *	green
3ď ¹	V ²⁺	violet
3d ¹	Cr ²⁺	violet
3ď	Mn ¹	violet
3ď*	Cr ² *	blue
3d ⁵	Mn ² *	pink
3d ⁵	Fe ²⁺	yellow
3ď°	Fe ²	green
3d°3d7	Co ²⁺ Co ²⁺	bluepink
3d ⁶	Ni ²⁺	green
3d ⁹	Cu ²⁺	blue
3d ¹⁰	Zn ^{2*}	colourless

Formation of Complex Compounds

- Complex compounds are those in which the metal ions bind a number of anions or neutral molecules giving complex species with characteristic properties.
- A few examples are:
- $[Fe(CN)_6]^{3-}$, $[Fe(CN)_6]^{4-}$, $[Cu(NH_3)_4]^{2+}$ and $[PtCl_4]^{2-}$
- The transition metals form a large number of complex compounds.
- This is due to the comparatively smaller sizes of the metal ions, their high ionic charges and the availability of *d* orbitals for bond formation.

Catalytic Properties

- The transition metals and their compounds are known for their catalytic activity.
- This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes.
- Vanadium(V) oxide (in Contact Process),
- finely divided iron (in Haber's Process), and
- Nickel (in Catalytic Hydrogenation) are some of the examples.
- Catalysts at a solid surface involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilise 3d and 4s electrons for bonding).

- This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowering).
- Also because the transition metal ions can change their oxidation states, they become more effective as catalysts.
- For example, iron(III) catalyses the reaction between iodide and persulphate ions.

2
$$\Gamma$$
 + S₂O₈²⁻ \rightarrow I₂ + 2 SO₄²⁻
An explanation of this catalytic action can be given as:
2 Fe⁵⁺ + 2 Γ \rightarrow 2 Fe²⁺ + I₂
2 Fe²⁺ + S₂O₈²⁻ \rightarrow 2 Fe³⁺ + 2SO₄²⁻

Formation of Interstitial Compounds

- Interstitial compounds are those which are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
- They are usually non stoichiometric and are neither typically ionic nor covalent,
- ▶ for example, TiC, Mn₄N, Fe₅H, VH_{0.55} and TiH_{1.7}, etc.
- Because of the nature of their composition, these compounds are referred to as interstitial compounds.

Physical and chemical characteristics of Interstitial Compounds

- (i) They have high melting points, higher than those of pure metals.
- (ii) They are very hard, some borides approach diamond in hardness.
- (iii) They retain metallic conductivity.
- (iv) They are chemically inert.

Alloy Formation

- Alloys are formed by atoms with metallic radii that are within about 15 percent of each other. Because of similar radii and other characteristics of transition metals, alloys are readily formed by these metals.
- The alloys so formed are hard and have often high melting points.
- The best known are ferrous alloys: chromium, vanadium, tungsten, molybdenum and manganese are used for the production of a variety of steels and stainless steel.

 Alloys of transition metals with non transition metals such as brass (copper-zinc) and bronze (copper-tin), are also of considerable industrial importance.

Some Important Compounds of Transition Elements

Oxides and Oxoanions of Metals

- These oxides are generally formed by the reaction of metals with oxygen at high temperatures.
- All the metals except scandium form MO oxides which are ionic.
- The highest oxidation number in the oxides, coincides with the group number and is attained in Sc₂O₃ to Mn₂O₇.

Potassium dichromate K₂Cr₂O₇

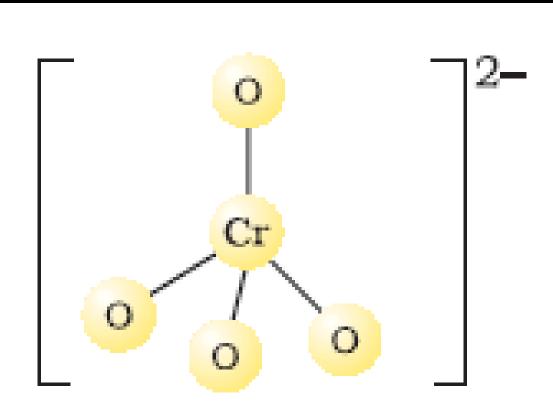
- Potassium dichromate is a very important chemical used in leather industry and as an oxidant for preparation of many azo compounds.
- Dichromates are generally prepared from chromate, which in turn are obtained by the fusion of chromite ore (FeCr₂O₄) with sodium or potassium carbonate in free access of air.
- The reaction with sodium carbonate occurs as follows

4 FeCr₂O₄ + 8 Na₂CO₃ + 7 O₂ \rightarrow 8 Na₂CrO₄ + 2 Fe₂O₃ + 8 CO₂

The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution from which orange sodium dichromate, Na₂Cr₂O₇. 2H₂O can be crystallised.

 $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$

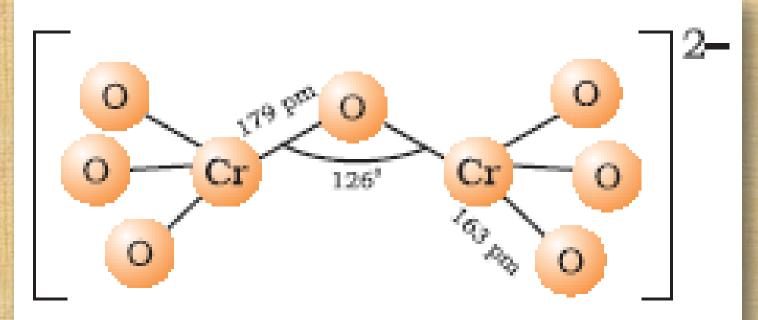
- •Sodium dichromate is more soluble than potassium dichromate.
- •The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.

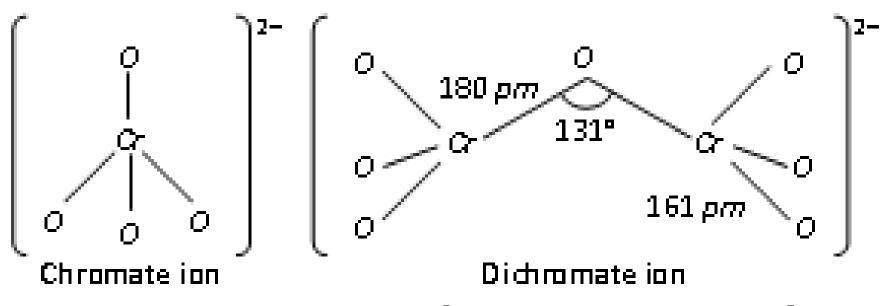

 $Na_2Cr_2O_7 + 2 \text{ KCl} \rightarrow K_2Cr_2O_7 + 2 \text{ NaCl}$

Orange crystals of potassium dichromate crystallise out.

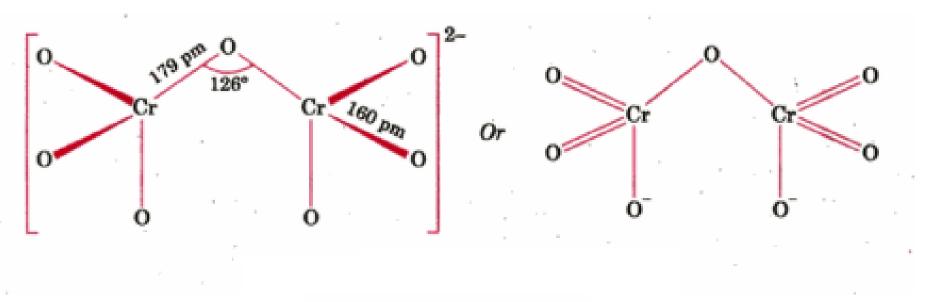
- The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution.
- The oxidation state of chromium in chromate and dichromate is the same.

 $2 \text{ CrO}_4^{2-} + 2\text{H}^+ \rightarrow \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O}$ $\text{Cr}_2\text{O}_7^{2-} + 2 \text{ OH}^- \rightarrow 2 \text{ CrO}_4^{2-} + \text{H}_2\text{O}$


The structure of chromate ion


Chromate ion

d and f block elements :


The structure of dichromate ion

Dichromate ion

The structure of chromate (CrO^{-1}_{4}) and dichromate $(Cr_{2}O_{7}^{2})$ ions

Dichromate ion (Cr₂O₇²⁻)

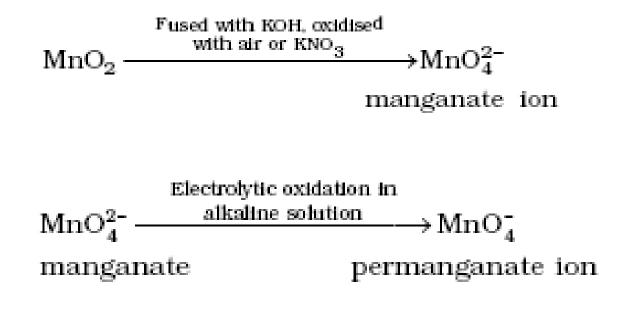
- The chromate ion is tetrahedral whereas the dichromate ion consists of two tetrahedra sharing one corner with Cr–O–Cr bond angle of 126°.
- Sodium and potassium dichromates are strong oxidising agents; the sodium salt has a greater solubility in water and is extensively used as an oxidising agent in organic chemistry.
- Potassium dichromate is used as a primary standard in volumetric analysis.
- In acidic solution, its oxidising action can be represented as follows:

$\operatorname{Cr_2O_7^{2-}} + 14\operatorname{H^+} + 6e^- \rightarrow 2\operatorname{Cr^{3+}} + 7\operatorname{H_2O} (E^\Theta = 1.33\operatorname{V})$

- Thus, acidified potassium dichromate will oxidise iodides to iodine, sulphides to sulphur, tin(II) to tin(IV) and iron(II) salts to iron(III).
- The half-reactions are noted below:

The full ionic equation may be obtained by adding the halfreaction for potassium dichromate to the half-reaction for the reducing agent, for e.g.,

$$Cr_2O_7^{2-} + 14 \text{ H}^+ + 6 \text{ Fe}^{2+} \rightarrow 2 \text{ Cr}^{3+} + 6 \text{ Fe}^{3+} + 7 \text{ H}_2O_7^{3+}$$


Potassium permanganate KMnO₄

- Potassium permanganate is prepared by fusion of MnO₂ with an alkali metal hydroxide and an oxidising agent like KNO₃.
- This produces the dark green K₂MnO₄ which disproportionates in a neutral or acidic solution to give permanganate.

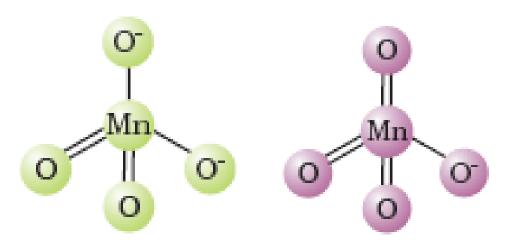
 $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^* \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$

Commercial method of preparation

 Commercially it is prepared by the alkaline oxidative fusion of MnO₂ followed by the electrolytic oxidation of manganate (VI).

Laboratory method of preparation

In the laboratory, a manganese (II) ion salt is oxidised by peroxodisulphate to permanganate.


$$2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O \rightarrow 2MnO_4^{-} + 10SO_4^{2-} + 16H^{+}$$

Potassium permanganate forms dark purple (almost black) crystals which are isostructural with those of $KClO_4$.

The salt is not very soluble in water (6.4 g/100 g of water at 293 K), but when heated it decomposes at 513 K.

$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$

manganate and permanganate ions

Tetrahedral manganate (green) ion

Tetrahedral permanganate (purple) ion

- The manganate and permanganate ions are tetrahedral;
- the green manganate is paramagnetic with one unpaired electron
- but the purple permanganate is diamagnetic.

Redox Reactions

- Acidified permanganate solution oxidises oxalates to carbon dioxide, iron(II) to iron(III), nitrites to nitrates and iodides to free iodine.
- The half-reactions of reductants are:

$$5 | \longrightarrow 10 CO_2 + 10e^-$$

 COO^-
 $5 Fe^{2+} \rightarrow 5 Fe^{3+} + 5e^-$
 $5NO_2^- + 5H_2O \rightarrow 5NO_3^- + 10H^+ + 10e^-$
 $10I^- \rightarrow 5I_2 + 10e^-$

 $\begin{array}{ll} \mathrm{MnO_4^-} + \mathrm{e^-} \to \mathrm{MnO_4^{2-}} & (E^{\oplus} = + \ 0.56 \ \mathrm{V}) \\ \mathrm{MnO_4^-} + 4\mathrm{H^+} + 3\mathrm{e^-} \to \mathrm{MnO_2} + 2\mathrm{H_2O} & (E^{\oplus} = + \ 1.69 \ \mathrm{V}) \\ \mathrm{MnO_4^-} + 8\mathrm{H^+} + 5\mathrm{e^-} \to \mathrm{Mn^{2+}} + 4\mathrm{H_2O} & (E^{\oplus} = + \ 1.52 \ \mathrm{V}) \end{array}$

A few important oxidising reactions of KMnO₄ are given below:

In acid solutions:

(a) Iodine is liberated from potassium iodide :

 $10\Gamma + 2MnO_4^- + 16H^+ ---> 2Mn^{2+} + 8H_2O + 5I_2$ (b) Fe²⁺ ion (green) is converted to Fe³⁺ (yellow): $5Fe^{2+} + MnO_4^- + 8H^+ ---> Mn^{2+} + 4H_2O + 5Fe^{3+}$

(c) Oxalate ion or oxalic acid is oxidised at 333 K: $5C_{9}O_{4}^{2-} + 2MnO_{4}^{-} + 16H^{+} - - > 2Mn^{2+} + 8H_{2}O + 10CO_{2}$ (d) Hydrogen sulphide is oxidised, sulphur being precipitated: $H_{9}S \longrightarrow 2H^{+} + S^{2-}$ $5S^{2-} + 2MnO_{4} + 16H^{+} - - > 2Mn^{2+} + 8H_{2}O + 5S$ (e) Sulphurous acid or sulphite is oxidised to a sulphate or sulphuric acid: $5SO_{2}^{2} + 2MnO_{4}^{-} + 6H^{+} - - > 2Mn^{2} + 3H_{2}O + 5SO_{4}^{2}$ (f) Nitrite is oxidised to nitrate: $5NO_2^{-} + 2MnO_4^{-} + 6H^{+} - - > 2Mn^{2+} + 5NO_3^{-} + 3H_2O$

- In neutral or faintly alkaline solutions:
 - (a) A notable reaction is the oxidation of iodide to iodate: $2MnO_4^- + H_2O + I^- \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$
 - (b) Thiosulphate is oxidised almost quantitatively to sulphate: $8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$
 - (c) Manganous salt is oxidised to MnO₂; the presence of zinc sulphate or zinc oxide catalyses the oxidation:

 $2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$

Note:

Permanganate titrations in presence of hydrochloric acid are unsatisfactory since hydrochloric acid is oxidised to chlorine.

- Besides its use in analytical chemistry, potassium permanganate is used as a favourite oxidant in preparative organic chemistry.
- Its uses for the bleaching of wool, cotton, silk and other textile fibres and
- for the decolourisation of oils are also dependent on its strong oxidising power.

THE INNER TRANSITION ELEMENTS (f-BLOCK)

	Repres	entative	:											-		element		Noble gases
	elements										——GF	LOUP 1	NUMBE	R				
	GROUP														18			
	NUM						H											0 2
	1	2					$-1.s^4$						13	14	15	16	17	He
'	IA	ILA						_					ΠB	IV B	VВ	VI B	$V\Pi B$	$1s^2$
	- 3	+		d-Transition elements									5	6	7	8	9	10
2	Li	Ee					OUP	NUMBE					E.	C .	N.	Ō,	F	Ne
	2.51	2x2				— Gi	OUUF .	NUMBE					$-2s^22t^3$	$2s^2 2p^2$	$-2s^22p^2$	$2s^2 2p^4$	$2s^2 2p^3$	$\frac{2s^2 2p^6}{18}$
	11	12	3	4	5	6	7	8	9	10	11	12	13	- 14	15	16	17	
A P P	Na 3a ⁱ	Mg $3s^2$	ШΑ	IV A.	V A	VI A	VIIA		- VIII -		IB	ПВ	$\frac{AI}{3s^29y^4}$	$\frac{\text{Si}}{3s^3p^2}$	P 3s ² 3p ²	$\frac{S}{3r^3p^4}$	Cl 3s ² 3g ⁸	$Ar = 3s^2 3p^6$
2	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
₽ 4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
e	4s ¹	4s ²	$3d^44s^1$	$3d^{4}ds$	3d ² 4s ¹	3.4 48	34 45	3d ⁴ 4s	$3d^{2}4s^{2}$	$-3d^{4}4s^{1}$	3d4s'	$-3d^{2}A^{2}$	$-4s^2 4g^1$	$-4s^{2}4p^{2}$	$4s^2 4p^2$	$4s^{2}4p^{4}$	$4s^2 4s^2$	$4a^{2}4p^{*}$
8	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
E 2	Rb	Sr	Y.	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag .	Cd	In .	Sn	Sb	Te		Xe
1	551	$2s^{2}$	$4d^{3}5s^{2}$	$4d^{2}Sd^{1}$	4d ⁴ 5s ¹	44 ⁸ 52 ¹	4d ⁴ 5s ²	48 ⁹ 58 ⁴	4d ⁴ 5s ¹	4d ¹⁹	$-4d^{10}5s^{1}$	$-4d^{10}5s^{2}$	58 ² 59 ⁴	$5s^25p^2$	- 58 ³ 59	$5\delta^2 Sp^4$	sit sp	5s ³ 5p ⁸
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	1.8	Hf ⊮ ⁴ Sd'€i	Ta 53'63'	W Sa ⁵ 6 ²	Re 5d [°] bs ²	Os 5d ¹ 6s ²	$\frac{\mathrm{lr}}{d6s^2}$	Pt 5a°bs'	Au 5d*6s'	Hg 5d ⁴⁶ 63	$\frac{1}{6s^25y^4}$	Pb	Bi	Po	At	Rn 63 ² 69 ⁶
	63' 87	65 ⁷ 88	0.0	1.05.4	105	106	20.05	3a os 108	:a os 109	110	<u>50 05</u>	112	05.08	$\frac{6s^26s^2}{114}$	63'69	63 ² 60 ⁴	$6s^2 \xi p'$	as op
	Fr	Ra	89 Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Unu	Uub	_	Uuq	_	Uuh		_
r	751	7.8 ⁴	$-6d^{2}s^{2}$	NI	Do	-ag	Dil	113	NIL	Ds	Cuu	000		ond		oun		

f-Inner transition elements

	58	- 59	60	61	62	63	64	65	66	- 67	-68	- 69	70	- 71
Länthanoids 4/ "5d ⁸⁴ 6s"	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
47 54 68	4/3d6s2	4/ ² 5d ² 6r ²	$4/^{4}Sd^{2}6s^{2}$	$4f^25d^26e^2$	4/3d 6s2	4/3/652	$4f^{4}Sd^{4}6s^{2}$	$4/^{8}5d^{8}6s^{2}$	$4f^{11}5d^{1}6s^{2}$	4f ⁴¹ 5d ⁴ 6i ²	$4f^{4}3d^{6}s^{2}$	$4^{-0} 5d^{-6}$	4/ ⁴ 5d ⁴ 6s ²	$4l^{2}5l^{4}6l^{3}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
++Actino ds	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
5f*6d***7? ²	$5f^{0}bd^{2}7s^{2}$	$5f^{2}6d^{2}7s^{2}$	$5f^{2}6d^{4}7s^{2}$	$5f^{4}5d^{4}7s^{2}$	$5f^{0}6d^{0}7s^{2}$	5f°6d*752	$5f^{2}6d^{4}7s^{2}$	$5f^{2}6d^{2}7s^{2}$	$g^{**}6d^{0}7s^{2}$	$5f^{11}6d^{47}l^{2}$	$5f^{00}6d^{0}7s^{2}$	$5^{-12}6d^{0}s^{2}$		$5f^{*1}6d^{*}s^{2}$

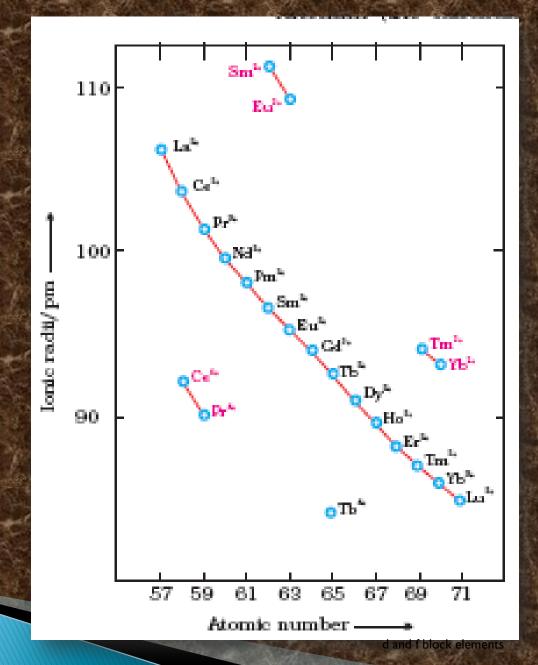
THE INNER TRANSITION ELEMENTS (*f-block*)

f-Inner transition elements														
	58	59	-60	61	62	63	64	65	-66	67	68	69	70	71
Inthanoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tn	Yb	Lu
f ">d " 6s"	$4/^{2}5d^{2}6a^{2}$	4/5/6-2	4/5/602	$4/5d^{2}6a^{2}$	$4f^4Sa^4ba^3$	$4/5a/5a^3$	$4f^2Sd^26s^3$	4/ Sa 6a3	4/*5d6a	41 5 d 6 a	4 3 6a	$4^{-6}5a^{5}6a^{2}$	$47^{2}5d^{2}6a^{2}$	41 ⁴⁴ 50 ⁴ 60
in the	- 90	91	- 92 -	- 93 -	94	-95	- 96	- 97	- 98	- 99	100	101	102	103
Actinoids	Th	Pa	U	Np	Pu	Am	Cm	BE	Cf	Es	Fm	Md	No	Lr
y"6d**7/*	$5f^{8}6d^{2}7s^{2}$	5/68 7/2	Study	Sfbd 7x2	5/68-2	516578	$5^{12}6d^{2}7s^{2}$	$55^{6}6a^{6}7c^{2}$	96672	5/116d*7v2		5"66"78"	81° 6875	$97^{10}6d^{10}2d$

THE INNER TRANSITION ELEMENTS (*f-BLOCK*)
 The *f-block consists of the two series, lanthanoids (the fourteen elements following lanthanum) and actinoids (the fourteen elements following actinium).*

- Because lanthanum closely resembles the lanthanoids, it is usually included in any discussion of the lanthanoids for which the general symbol Ln is often used.
- Similarly, a discussion of the actinoids includes actinium besides the fourteen elements constituting the series.

Electronic Configurations and Radii of Lanthanum and Lanthanoids


-				Electronic	R				
	Atomic Number	Name	Symbol	Ln	Ln ²⁺	Ln ⁵⁺	Ln ⁴⁺	Lu	Ln ^{s+}
	number								
	57	Lanthanum	La	$5d^{1}6s^{2}$	$5d^1$	4f °		187	106
8	58	Cerium	Ce	$4f^{4}5d^{1}6s^{2}$	$4f^{2}$	4f ⁻¹	$4f^{\circ}$	183	103
	59	Praseodymium	Рг	4f 26s2	$4f^2$	$4f^{2}$	$4f^1$	182	101
2	60	Neodymium	Nd	4f *6s²	4f ⁴	$4f^{2}$	$4f^2$	181	99
2	61	Promethium	Pm	4f ⁵ 6s ²	4f ⁵	4f ⁴		181	98
	62	Samarium	Sm	$4f^{6}6s^{2}$	4 <i>f</i> °	$4f^5$		180	96
	63	Europium	Eu	4f ⁷ 6s ²	$4f^7$	$4f^{\circ}$		199	95
2	64	Gadolinium	Gđ	$4f^{7}5d^{1}6s^{2}$	$4f^75d^1$	4f 7		180	94
	65	Terbium	тb	4f °6s²	$4f^{9}$	$4f^{6}$	$4f^{7}$	178	92
3	66	Dysprosium	Dy	$4f^{10}6s^2$	4f ¹⁰	4f °	4f °	177	91
2	67	Holmium	Ho	4f ¹¹ 6s ²	$4f^{11}$	4f ¹⁰		176	89
à	68	Erbium	Er	4f ¹² 6s ²	$4f^{12}$	4f ¹¹		175	88
	69	Thulium	Tm	4f ¹³ 6s ²	4f 19	$4f^{12}$		174	87
2	70	Ytterbium	Yb	4f ¹⁴ 6s ²	4f ¹⁴	4f ¹⁹		173	86
ALM.	71	Lutetium	Lu	$4f^{14}5d^{1}6s^{2}$	4f ¹⁴ 5d ¹	4f ¹⁴	-	-	

* Only electrons outside [Xe] core are indicated

The Lanthanoids

- Electronic Configurations
- atoms of these elements have electronic configuration with 6s² common but with variable occupancy of 4f level
- However, the electronic configurations of all the tripositive ions (the most stable oxidation state of all the lanthanoids) are of the form 4fⁿ (n = 1 to 14 with increasing atomic number).

Atomic and Ionic Sizes

Lanthanoid contraction

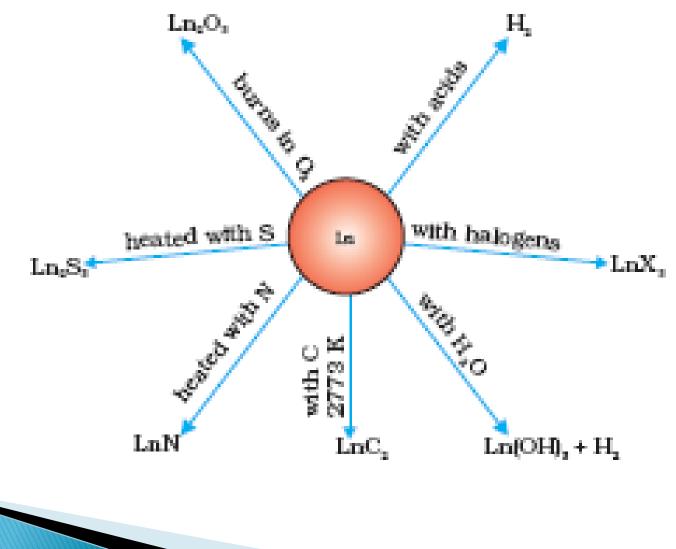
- The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanoid contraction
- The net result of the lanthanoid contraction is that the second and the third *d* series exhibit similar radii (e.g., Zr 160 pm, Hf 159 pm) and have very similar physical and chemical properties much more than that expected on the basis of usual family relationship
- The factor responsible for the lanthanoid contraction is the imperfect shielding of one electron by another in the same set of orbitals.

Oxidation States

- In the lanthanoids, La(III) and Ln(III) compounds are predominant species.
- However, occasionally +2 and +4 ions in solution or in solid compounds are also obtained.
- This irregularity (as in ionisation enthalpies) arises mainly from the extra stability of empty, half-filled or filled f subshell.
- Pr, Nd, Tb and Dy also exhibit +4 state but only in oxides, MO₂.
- The behaviour of samarium is very much like europium, exhibiting both +2 and +3 oxidation states

General Characteristics

- All the lanthanoids are silvery white soft metals and tarnish rapidly in air.
- The hardness increases with increasing atomic number, samarium being steel hard.
- Their melting points range between 1000 to 1200 K but
- samarium melts at 1623 K.
- They have typical metallic structure and are good conductors of heat and electricity.
- Density and other properties change smoothly except for Eu and Yb and occasionally for Sm and Tm.


- Many trivalent lanthanoid ions are coloured both in the solid state and in aqueous solutions.
- Colour of these ions may be attributed to the presence of *f* electrons.
- Neither La³⁺ nor Lu³⁺ ion shows any colour but the rest do so.
- However, absorption bands are narrow, probably because of the excitation within *f* level.

- The lanthanoid ions other than the f⁰ type (La³⁺ and Ce⁴⁺) and the f¹⁴ type (Yb²⁺ and Lu³⁺) are all paramagnetic.
- The paramagnetism rises to maximum in neodymium.
- The first ionisation enthalpies of the lanthanoids are around 600 kJ mol⁻¹, the second about 1200 kJ mol⁻¹ comparable with those of calcium.

Chemical behavior

In their chemical behaviour, in general, the earlier members of the series are quite reactive similar to calcium but, with increasing atomic number, they behave more like aluminium.

Chemical reactions of the lanthanoids.

The Actinoids

- The actinoids include the fourteen elements from Th to Lr.
- The names, symbols and some properties of these elements are given in next slide
- The actinoids are radioactive elements and the earlier members have relatively long half-lives, the latter ones have half-life values ranging from a day to 3 minutes for lawrencium (Z = 103).
- The latter members could be prepared only in nanogram quantities.

			Electronic coni	figurations*	Radii/pm				
Atomic	Name	Symbol	м	M ²⁺	M,	M ^{3*}	M ⁴⁺		
Number									
89	Actinium	Ac	$6d^{1}7s^{2}$	5 <i>f</i> °		111			
90	Thorium	Th	6d ² 7s ²	5 <i>f</i> 1	5 <i>f</i> °		99		
91	Protactinium	Pa	$5f^{2}6d^{4}7s^{2}$	5f 2	5f '		96		
92	Uranium	U	5f ³ 6d ⁴ 7s ²	5 <i>f</i> °	$5f^2$	103	93		
93	Neptunium	Np	5f ⁴ 6d ⁴ 7s ²	5 ∫ ⁴	5f °	101	92		
94	Plutonium	Pu	5f °7s²	5 <i>f</i> °	5f*	100	90		
95	Americium	Am	$5f^{7}7s^{2}$	5 <i>f</i> "	5f °	99	89		
96	Curium	Cm	5f ⁷ 6d ⁴ 7s ²	5f 7	5f 7	99	88		
97	Berkelium	Bk	$5f^{P}7s^{2}$	5f °	5f 7	98	87		
98	Californium	Cf	5f 107 s ²	5f °	5f °	98	86		
99	Einstenium	Es	5f 117s ²	5f 10	5f°	-	-		
100	Fermium	Fm	$5f^{12}7s^2$	5f "	5f ¹⁰	-	-		
101	Mendelevium	Md	5f ¹² 7.s ²	5f 12	5f 11	-	-		
102	Nobelium	No	5f ¹⁴ 7.s ²	5f 19	5f 12	-	-		
103	Lawrencium	Lr	5f ¹⁴ 6d ¹ 7s ²	5f 14	5f 12	-	-		

Electronic Configurations

- All the actinoids are believed to have the electronic configuration of 7s² and variable occupancy of the 5f and 6d subshells.
- The fourteen electrons are formally added to 5*f*, though not in thorium (Z = 90) but from Pa onwards the 5*f* orbitals are complete at element 103.
- The irregularities in the electronic configurations of the actinoids, like those in the lanthanoids are related to the stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals.

Thus, the configurations of Am and Cm are [Rn] 5f⁷7s² and [Rn] 5f⁷6d1⁷s².

- Although the 5f orbitals resemble the 4f orbitals in their angular part of the wave-function, they are not as buried as 4f orbitals
- and hence 5f electrons can participate in bonding to a far greater extent.

Ionic Sizes

- There is a gradual decrease in the size of atoms or M³⁺ ions across the series.
- This may be referred to as the actinoid contraction (like lanthanoid contraction).
- The contraction is, however, greater from element to element in this series resulting from poor shielding by 5f electrons.

Oxidation States

Oxidation States of Actinium and Actinoids

	Ac	Тh	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	3		3	3	3	3	3	3	3	3	3	3	3	3	3	
		4	4	4	4	4	4	4	4							
			5	5	5	5	5									
				6	6	6	6									
L					7	7										

General Characteristics and Comparison with Lanthanoids

- The actinoid metals are all silvery in appearance but display a variety of structures.
- The structural variability is obtained due to irregularities in metallic radii which are far greater than in lanthanoids.
- The actinoids are highly reactive metals, especially when finely divided

- The action of boiling water on them, for example, gives a mixture of oxide and hydride and combination with most non metals takes place at moderate temperatures.
- Hydrochloric acid attacks all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers;
- alkalies have no action.
- The magnetic properties of the actinoids are more complex than those of the lanthanoids.
- The 5f electrons, will therefore, be more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids.
- Because the outer electrons are less firmly held, they are available for bonding in the actinoids.

Applications of d- and f-Block Elements

- Iron and steels are the most important construction materials.
- Some compounds are manufactured for special purposes such as TiO for the pigment industry and MnO₂ for use in dry battery cells.
- The elements of Group 11 are still worthy of being called the coinage metals, although Ag and Au are restricted to collection items and the contemporary UK 'copper' coins are copper-coated steel.

Applications of d- and f-Block Elements

- The 'silver' UK coins are a Cu/Ni alloy.
- Many of the metals and/or their compounds are essential catalysts in the chemical industry.
- V_2O_5 catalyses the oxidation of SO_2 in the manufacture of sulphuric acid.
- TiCl₄ with AI(CH₃)₃ forms the basis of the Ziegler catalysts used to manufacture polyethylene (polythene).
- Iron catalysts are used in the Haber process for the production of ammonia from N_2/H_2 mixtures.

Applications of d- and f-Block Elements

- Nickel catalysts enable the hydrogenation of fats to proceed.
- In the Wacker process the oxidation of ethyne to ethanal is catalysed by PdCl₂.
- Nickel complexes are useful in the polymerisation of alkynes and other organic compounds such as benzene.
- The photographic industry relies on the special lightsensitive properties of AgBr.

ThankYou