	LAS			-		<u> </u>				
		SCHEM	E OF EAMINATION AND MARKS DISTRI							
				MID –	FIRST TERM	SECOND				
				TERM	(OCT-NOV)	TERM				
				(AUG)	150	150				
		D	URATION IN MINUTES MAXIMUM MARKS	<u>60</u> 20	150 55	150 55				
		N	UMBER OF QUESTIONS	10	25 - 27	55 25 - 27				
		1	KNOWLEDGE	10	$\frac{23 - 27}{30\% \pm 5\%}$	23 - 21				
WEIGHT	AGE		UNDERSTANDING		$\frac{30\% \pm 3\%}{40\% \pm 5\%}$					
ТО			SKILL		$\frac{40\% \pm 3\%}{10\% + 5\%}$					
OBJEC 1	IVE		APPLICATION		$\frac{10\% \pm 5\%}{20\% \pm 5\%}$					
1	601			0.6	1	r				
1			SIC CONCEPTS OF CHEMISTRY	06	05					
2			RE OF ATOM	08	07					
3			CATION OF ELEMENTS AND	06	05					
₹ —			TY OF PROPERTIES							
E 4			L BONDING AND MOLECULAR		10					
WEIGHTAGE	_	RUCTU			09					
TTA 5	_		F MATTER		09					
$\overline{\Omega}$ 6	_		YNAMICS			07				
	~	UILIBR				07				
TO 8	RE	DOX RE	EACTIONS			07				
9	HY	DROGE	N		06					
0 10	s-B	LOCK E	ELEMENTS			05				
CONTENT 11 12	p-B	LOCK E	ELEMENTS		\checkmark	06				
E III	OR	GANIC	CHEMISTRY-SOME BASIC PRINCIPLE							
Z 12	AN	D TECH	INIQUES		11					
13	HY	DROCA	RBONS			12				
14	EN	VIRONN	MENTAL CHEMISTRY		02					
15	CO	RE CON	NTENT(20%)			11				
			MULTIPLE CHOICE QUESTION (MCC)) -						
			1MARK	0 02	4-5	4-5				
WEIGHT	ſAGE	ТО	VERY SHORT ANSWER (VSA) 1MAI	RK 02	3-4	3-4				
TYPE O			SHORT ANSWER I (SA I)2MARKS		16-20	16-20				
QUESTI	ONS		SHORT ANSWER (SA II)3MARKS	06	18-24	18-24				
			LONG ANSWER (LA) 4MARKS	00	8	8				
			SCHEME OF OPTIO		0	0				
DIEEL		X I DX/F								
DIFFI	LULT	Y LEVE	EL EASY:-30% ±5% AVERAGE:-5	U% I3%	DIFFICULT :-2	20% ±5%				

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION CLASS: XI SUBJECT: CHEMISTRY

PRACTICAL, PROJECT AND ASSIGNMENT

PRACTICAL & PROJECT	FIRST-TERM PRACTICALS	SECOND-TERM PRACTICALS	ASSIGNMENT INTHE FIRST- TERM (THEORY COMPONENT)
VOLUMETRIC ANALYSIS	14	05	
NATURAL ORG SUBSTANCE	02		
INORGANIC COMPOUND		10	
JOURNAL + VIVA	2+2	3+2	
INVESTIGATORY PROJECT +VIVA		12+8	
MAXIMUM MARKS	20	40	10
DURATION IN MINUTES	120	180	

Page 1 of 1

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION MODEL QUESTION PAPER OF MID TERM EXAMINATION SUBJECT:-CHEMISTRY CLASS:-XI **MAXIMUM MARKS :-20 DURATION:- 60 MINUTES** Instructions:-(1) All questions are compulsory however question 4 and 10 has internal choice. (2) Use of calculator is not permitted, however logarithmic table will be provided on request. (3) Every Question should be attempted only once. (4) Section-A consists of 4 questions of 1 mark each. Section-B consists of 3 questions of 2 marks each. Section-C consists of 2 questions of 3 marks each. Section-D consists of 1 question of 4 marks. (5) $N_A = 6.022 \times 10^{23}$, Planck's constant = 6.626×10^{-34} J s Section-A Q1.The highly metallic element will have theElectronic configuration [1] ▶2,8,7 ▶ 2,8,8,5 ▶ 2,8,8,1 ▶2.8.2 Q2. If 6.022×10²⁰ molecules of a substance weigh 44 mg, then molar mass of the substance isg/mol [1] ▶4.4 ▶44 ▶ 440 ▶0.44 Q3. Write the atomic number and electronic configuration of the element present in the third period and seventeenth group. [1] Q4. Differentiate between 1 mol NaOH and 1M NaOH. (any one point). [1] Differentiate between molarity and molality (any one point). Section-B Q5. Calculate the uncertainty in the velocity of a cricket ball of mass 150 g, if the uncertainty in its position is of the order of 10^{-10} m. [2] Q6. A block of metal Rhenium having dimensions 10 cm × 5 cm × 20 cm weighs 21.02 kg. Calculate the density of Rhenium in grams per cubic centimetre. [2] Q7. How many significant figures are present in each of the following? [2] (a) 2.56×10^{3} (b) 0.00256 (c) 13.420 (d) 600 Section-C Q8. With the help of a neat labelled diagram, explain the discovery of electron. [3] Q9. Draw diagrams for 1s and 2s orbitals. Explain with the help of suitable examples stability of half filled and completely filled sub shells. [3] Section-D Q10. What are isoelectronic species? Give four examples of ions which are isoelectronic with argon. Arrange the examples given by you in the increasing order of their ionic radius. [4] OR Derive the group number, period and block of the element "X" with atomic number 39, from its electronic configuration. cacacacacacacacacacaca THE ENDcacacacacacacacacacaca

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

QUESTION WISE ANALYSIS AND BLUE PRINT OF CHEMISTRY PAPER(FROM 2017-18)

EXAMINATION:-MID

CLASS:-XI

MAX MARKS:-20

DURATION:-60 MINUTES

					50	DM		1007		ORIEC	TNEC	1007	DIFFIC		1007	
	Q.NO	UNIT NO	MARKS	MCQ	VSA	RM SA-I	SA-II	100% LA	ĸ	U	S	100% A	LEV. EASY	AVE	100% DIF	DURATION MINUTES
TOTAL	10		20	2	2	6	6	4	4	10	2	4	6	10	4	53
%				10%	10%	30%	30%	20%	20%	50%	10%	20%	30%	50%	20%	
L	1	3	1	1						1				1		4
	2	1	1	1								1			1	4
	3	3	1		1				2			1			1	2
	4	1	1		1					1				1		3
	5	2	2			2						2			2	6
	6	1	2			2				2				2		5
	7	1	2			2				2				2		5
	8	2	3				3		2		1		2	1		7
	9	2	3				3		2		1		2	1		7
	10	3	4					4		4			2	2		10
														1		

MCQ=MULTIPLE CHOICE QUESTION

VSA=VERY SHORT ANSWER

SA=SHORT ANSWER

LA=LONG ANSWER

SEAT NO:-

TABLE NO:-

Goa Board of Secondary & Higher Secondary Education Alto, Betim – Goa CHEMISTRY -XI SCIENCE (FROM JUNE 2017 ONWARDS)

First Terminal Practical Examination

MODEL QUESTION PAPER

Duration: 2 Hours

Session:	Max. Marks: 20

Instructions:

Date:

- 1) Write your Examination Seat number and laboratory table number on your answer book and question paper.
- 2) Get the burette reading and confirmatory tests initialed by the examiner.
- 3) Check if the number on (i) your table (ii) answer script and (iii) the containers A, B, and E/F are the same. If not, report immediately to the examiner.
- 4) Use of non programmable calculator is allowed.

Atomic Masses:- H=1, C=12, N=14, O=16, Na =23, S=32, K=39.

Q.1. You are provided with two solutions as follows:-

 Container A:
 N/M solution of

 Container B:
 Solution

Using the above solutions, determine N/M of the solution in container **B** and calculate the strength of the solution in container **B** in terms of **g per____mL**. Also Convert the N/M of solution **B** to M/N.

(14Marks)

Q.2. Identify the natural organic substance supplied to you in Container E/F bearing your table number. (2 Marks)

Q.3. Journal + Viva

(2+2 Marks)

SEAT NO:-

TABLE NO:-

Goa Board of Secondary & Higher Secondary Education Alto, Betim – Goa CHEMISTRY -XI SCIENCE Second Term Practical Examination(FROM JUNE 2017 ONWARDS)

MODEL QUESTION PAPER

Date:

Session:

Duration: 3 Hours Max. Marks:40

Instructions:

- 1) Write your Examination Seat number and laboratory table number on your answer book and question paper.
- 2) Get the burette reading and confirmatory tests initialed by the examiner.
- 3) Check if the number on (i) your table (ii) answer script and (iii) the containers A, B, and D are the same. If not, report immediately to the examiner.
- 4) Use of non programmable calculator is allowed.

Atomic Masses:- H=1, C=12, N=14, O=16, Na =23, S=32, K=39.

You are provided with two solutions as follows:-Q.1. Container A:_____ g/___ mL solution of _____. Container B:Impure solution of Using the above solutions ,determine: i)N/M of the solution in container B. ii)Calculate the percentage purity of the solution in container **B**, _____ **g** of which have been dissolved per ____mL. (05 Marks) Analyse the inorganic salt given in container **D** bearing your table Q.2. number qualitatively and detect the cation and anion present. Give a complete report of all the tests performed. Write the formula of the Compound detected. (10 Marks) Q.3. Journal + Viva (3+2 Marks)

Q.4. Project + Viva

(12+8 Marks)

	<u>l Practical Examination (FRC</u> <u>Marking Schem</u>	
Q1 Volumetric Analysis (· · · · · · · · · · · · · · · · · · ·	(14 Marks)
	e, pipette/conical flask, indic	-
ii) Chemical equation		(1Mark)
iii) <u>Reading</u>		(7 Marks)
•± 0.1	7 mks	
•± 0.2	6 mks	
•± 0.3	5 mks	
• ± 0.4	4 mks	
•± 0.5	3 mks	
•± 0.6	2 mks	
v)Calculations:		(5Mai
1.Determination of N/M	2 mks	
2 Conversion of M/N	1 mk	
3 Strength	2 mks	
Q2. Natural Organic sub	stance	(2 Marks)
Q3.Journal and viva (Dist	ribution of marks same as fo	or the Board examination). (2+2 Mar
	Practical Examination	
Q 1) Volumetric Analysis		(05 Marks)
	e, pipette/ conical flask, indic	cator, color change) (¹ / ₂ Mark)
		e 1
		(3 Marks)
± 0.1	3mks	e 1
$\pm 0.1 \pm 0.2$	2 ½ mks	e 1
± 0.1 ± 0.2 ± 0.3	2 ½ mks 2mks	e 1
± 0.1 ± 0.2 ± 0.3 ± 0.4	2 ½ mks 2mks 1 ½ mks	e 1
± 0.2 ± 0.3 ± 0.4 ± 0.5	2 ½ mks 2mks	(3 Marks)
$\begin{array}{r} \pm 0.1 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.4 \\ \pm 0.5 \\ \underline{v})Calculations: \end{array}$	2 ½ mks 2mks 1 ½ mks 1 mk	(3 Marks) (1 ½ Marks)
$\begin{array}{r} \pm 0.1 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.4 \\ \pm 0.5 \\ \hline v) Calculations: \\ 1. Conversion of g/V \end{array}$	2 ½ mks 2mks 1 ½ mks 1mk V mL to M/N of Solution A	(3 Marks) (1 ½ Marks) ¼ mk
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N	2 ½ mks 2mks 1 ½ mks 1 mk V mL to M/N of Solution A N/M of Solution B	(3 Marks) (1 ¹ / ₂ Marks) ¹ / ₂ mk ¹ / ₂ mk
$\begin{array}{r} \pm 0.1 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.4 \\ \pm 0.5 \\ \hline \textbf{v)Calculations:} \\ 1. Conversion of g/V \\ 2. Determination of N \\ 3. Percentage purity of the second seco$	2 ½ mks 2mks 1 ½ mks 1 ½ mks 1mk V mL to M/N of Solution A N/M of Solution B of Solution B	(3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative	2 ½ mks 2mks 1 ½ mks 1 ½ mks 1mk V mL to M/N of Solution A V/M of Solution B of Solution B analysis	(3 Marks) (1 ¹ / ₂ Marks) (1 ¹ / ₂ Marks) (1 ¹ / ₂ Marks) (10 Marks)
$\begin{array}{r} \pm 0.1 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.4 \\ \pm 0.5 \\ \hline \textbf{v)Calculations:} \\ 1.Conversion of g/V \\ 2.Determination of N \\ 3.Percentage purity of \\ \textbf{Q2.Inorganic Qualitative} \\ 1) Preliminary test /Dry \\ \end{array}$	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} x 8 = 4 \frac{1}{2} \frac{1}{2} x \frac{1}{2} x \frac{1}{2} \frac{1}{2$	(3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk (10 Marks) S
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} x 8 = 4 \frac{1}{2} \frac{1}{2} x \frac{1}{2} x \frac{1}{2} \frac{1}{2$	(3 Marks) (1 ¹ / ₂ Marks) (1 ¹ / ₂ Marks) (1 ¹ / ₂ Marks) (10 Marks)
$\begin{array}{r} \pm 0.1 \\ \pm 0.2 \\ \pm 0.3 \\ \pm 0.4 \\ \pm 0.5 \\ \hline \textbf{v)Calculations:} \\ 1.Conversion of g/V \\ 2.Determination of N \\ 3.Percentage purity of \\ \textbf{Q2.Inorganic Qualitative} \\ 1) Preliminary test /Dry \\ \end{array}$	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} $	(3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk (10 Marks) S
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 v)Calculations: 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative 1) Preliminary test /Dry 2)Wet test for anion: Co	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} $	(3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk (10 Marks) (1½ mks)
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 v)Calculations: 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative 1) Preliminary test /Dry 2)Wet test for anion: Co 3)Wet test for cation: C	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} $	(3 Marks) (1 ¹ / ₂ Marks) (1 ¹ / ₂ Marks) (10 Marks) (1 ¹ / ₂ mks) (1 ¹ / ₂ mks) (1 ¹ / ₂ mks)
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 v)Calculations: 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Comparison of Parameters (Dry 2) (D	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \frac{1}{2} x \frac{1}$	(3 Marks) (3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk (10 Marks) (1 ½ mks) (1 mk) (2 mks)
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative 1) Preliminary test /Dry 2)Wet test for anion: Co 3)Wet test for cation: Co C	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \frac{1}{2$	(3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk ½ mk (10 Marks) s (1½ mks) (1mk) (2mks) (½ mk)
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative 1) Preliminary test /Dry 2) Wet test for anion: Co 3)Wet test for cation: C C 4). Correct formula	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} \frac{1}{2$	(3 Marks) (3 Marks) (1 ½ Marks) ½ mk ½ mk ½ mk (10 Marks) (1 ½ mk) (1 ½ mk)
± 0.1 ± 0.2 ± 0.3 ± 0.4 ± 0.5 <u>v)Calculations:</u> 1.Conversion of g/V 2.Determination of N 3.Percentage purity of Q2.Inorganic Qualitative 1) Preliminary test /Dry 2) Wet test for anion: Co 3)Wet test for cation: C C 4). Correct formula	$2 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \text{ mks}$ $1 \frac{1}{2} \text{ mks}$ $2 \frac{1}{2} \frac{1}{2$	(3 Marks) (3 Marks) (1 ½ Marks) ½ mk ½ mk (10 Marks) s (1½ mks) (1mk) (2mks) (1½ mk) (½ mk) (½ mk)

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION MODEL QUESTION PAPER OF FIRST TERM EXAMINATION SUBJECT:-CHEMISTRY CLASS:-XI MAXIMUM MARKS :-55 DURATION:- 150 MINUTES

Instructions:-

- 1. All questions are compulsory; however question 8, 24, and 25 has internal choice.
- 2. Use of calculator is not permitted, however logarithmic table will be provided on request.
- Every Question should be attempted only once. Section-A consists of 7 questions of 1 mark each. Section-B consists of 8 questions of 2 marks each. Section-C consists of 8 questions of 3 marks each. Section-D consists of 2 questions of 4 marks each.
- 4. $N_A = 6.022 \times 10^{23}$; At mass (u): H=1, C=12, O=16, S=32; C=3x10⁸m/s

Section-A

Q1. The compound which has neither 2^0 nor 3^0 carbon atom/s is (1)➢ Isobutene ➢ Pentane Isopentane Neopentane \geq Q2. From the following------ correctly represents 180g of H_2O . (1)ii) 6.023×10^{23} molecules of H₂O i) 5 moles of H₂O/ iv) 6.023×10^{24} molecules of H₂O iii) 10 moles of H₂O ➢ (i)and(iii) \succ (ii)and(iii) \succ (ii)and(iv) \succ (i)and(iv) Q3. For the elements O, C, F, CI and Br the correct order of their increasing radii is ----- . (1) \succ F, O,C,CI, Br ➢ F, C, O, CI, Br \succ F, CI, Br, O,C C, O, F, CI, Br Q4. The number of neutrons in deuterium is ------ . (1)≥ 0 > 1 > 2 > 3

Q5.Write the group number, period and block of the element with atomic number 40. (1)

Q6. Using Lewis dot structures show the formation of HNO ₃ molecule.	(1)
Q7. Why it is not possible to cool a gas to absolute zero?	(1)
Section-B	
Q8.An organic compound on combustion gives 54.22% carbon and 9.2% hydrogen. Calcu empirical formula. OR Calculate the molarity of a solution containing 49g of H ₂ SO ₄ in 250 mL of the solution.	late its (2)
Q9 Calculate the frequency of yellow light emitted from a sodium lamp having wavelengt nm. (2)	th of 580
Q10.Write the atomic number and name of element whose outermost electronic configurate $2p^3$. Name the type of orbital having quantum number n=4, 1=3, m=0 & s= $\frac{1}{2}$	ion is (2)
Q11.On the basis of VSEPR Theory draw the structures AB ₅ E and AB ₃ E type of molecules an example of each.	and give (2)
Q12. What is the main difference between boiling and evaporation? The compressibility far for a gas is less than one. What does it signify?	actor (Z) (2)
Q13.Give two points of differences between classical smog and photochemical smog.	(2)
Q14.Arrange CaH ₂ , BeH ₂ and TiH ₂ in the increasing order of their electrical conducta LiH, NaH and CsH in the increasing order of their ionic character.	ance and (2)
Q15.Out of $1M H_2SO_4$ and $1N H_2SO_4$ state, which is more concentrated and why?	(2)
Section-C	
Q16. Explain any three postulates of Bohr's atomic model.	(3)
Q17. State the trends in the electronegativity, metallic character and nature of oxides of ele within a group and across a period. (3)	ements,
Q18. On the basis of hybridization explain the formation of C_2H_2 molecule. Draw its struct comment on the type of hybridization.	eture and (3)
Q19.Graphicaliy represent Maxwell Boltzmann distribution of molecular speeds at two differences temperatures. Explain dipole-dipole forces of interaction with an example.	ferent (3)
Q20.Derive the ideal gas equation from the gas laws and name the terms involved in the en	quation. (3)
Q21.What is meant by 40 volume hydrogen peroxide solution. Calculate the strength in g volume solution of hydrogen peroxide.	/L of 20 (3)

Q22.Write the IUPAC names of acetaldehyde, toluene and n-hexylchloride. (3)

Q23. Draw the bond line structures of tert-butylcyclohexane, 5-Methylhexa-1, 4-diene and 3,3-Diethylpentane (3)

Section-D

- Q24.a) Name the type of hybridization observed in all the four carbon atoms of CH₂=CH- CH₂-CH₃, numbered as per the IUPAC norms.
 - b) Explain 'polarity' with respect to H-F molecule. Draw diagrams showing, overlap of 2px atomic orbitals according to molecular orbital theory. (4)

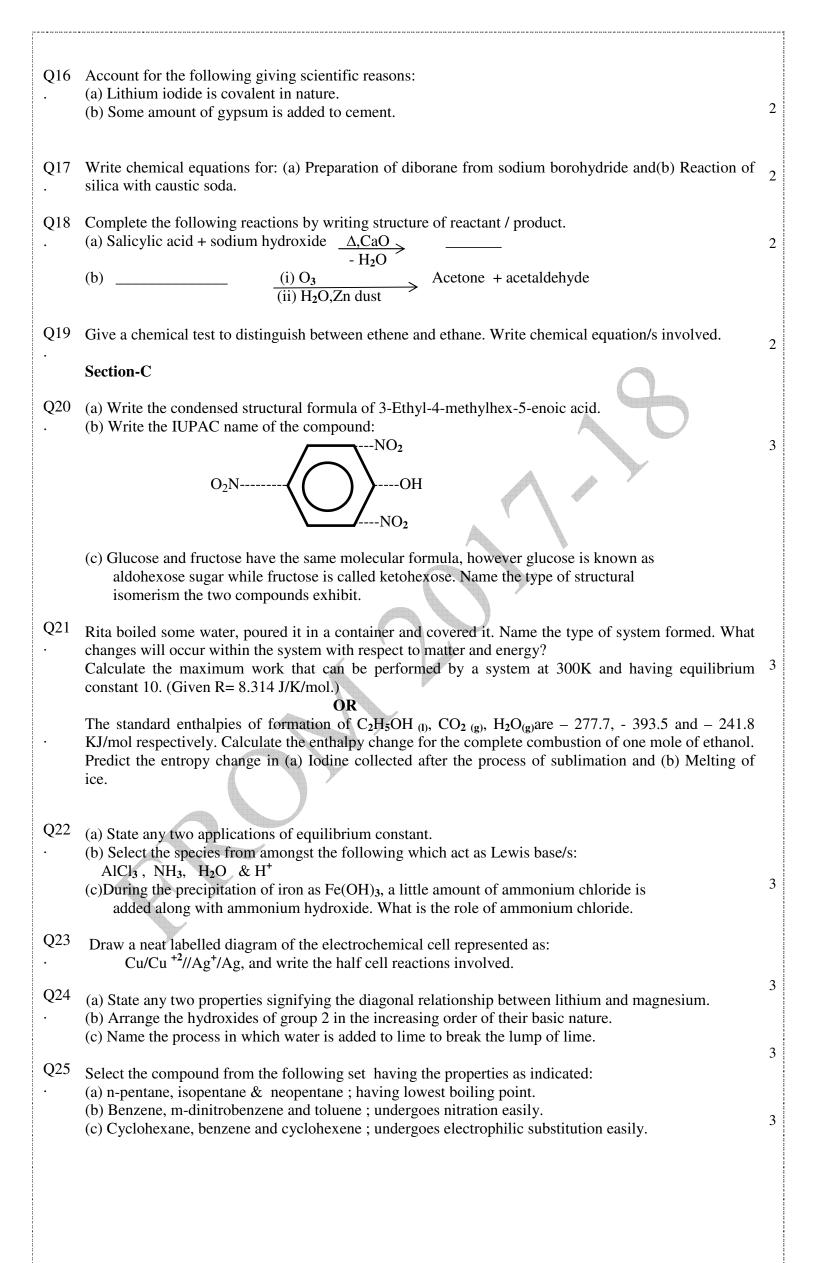
OR

a) How many sigma(σ) and Pi (π) bonds are there in propyne? Draw the geometry of PCl₅ molecule.

b) Explain with an example of each for any two exceptions of the octet rule.

Q25. Check if the names (a)1,1,2,2-Tetramethylethane; (b) 1-Methyl -6- ethyl cyclohexane; (c) 2- Isopropyl butane and (d) 1,2-Dimethyl- 1,2-dibromopropane are correct according to the IUPAC system of nomenclature, if not write the correct name.

OR


Write the bond line formulae of: (a) 2-Dimethylheptane (b) 2-Methyl -4- ethylpentane(c) 5-Ethyl- 5- chlorohexane and (d) 2-Isopropylpentane

Check if the name is correct according to the IUPAC system of nomenclature, if not write the correct name

		GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION														
			QUESTION	I WISE	ANAL	YSIS O	F CHEM	ISTRY ,	and e	BLUE F	RINT	OF CHE	MISTRY(F	ROM 20	917-18)	
	EXA	MINATIO	N:-FIRST TE	ERM		(CLASS:-	XI			MAX	MARKS:-	-55	DUR	ATION:-1	150 MINUTES
		UNIT	MARKS		-	FO	RM	100%	ОВ	JECTI	/ES	100%	DIFFIC LEV		100%	DURATION MINUTES
	Q.NO	NO		MCQ	VSA	SA-I	SA-11	LA	ĸ	U	S	A	EASY	AVE	DIF	MINOTES
TOTAL	25		55	4	3	16	24	8	18	23	6	8	17	26	12	135
7.				7%	5%	29%	44%	15%	33%	42%	11%	15%	31%	47%	22%	
	1	12	1	1						1		P		1		2.5
	2	1	1	1								1			1	3
	3	3	1	1						1				1		2.5
	4	9	1	1					1				1			2
	5	3	1		1							1			1	3
	6	4	1		1						1			1		2.5
	7	5	1		1					1				1		2.5
	8	1	2			2						2			2	6
	9	2	2			2						2			2	6
	10	2	2			2				2				2		5
	11	4	2			2					2			2		5
	12	5	2			2				2				2		5
	13	14	2			2				2				2		5
	14	9	2			2				2				2		5
	15	1	2			2				2				2		5

16	2	3		3		3				3			6
17	3	3		3		3				3			6
18	4	3		3		2		1		3			6
19	5	3		3		2		1			3		8
20	5	3		3		3				3			6
21	9	3		3		1			2	1		2	7
22	12	3		3			3				3		8
23	12	3		3			3				3		7
24	4	4			4	3		1	2	3	1		9
25	12	4			4		4					4	12
26								7					
27													

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION **MODEL QUESTION PAPER OF FINAL EXAMINATION CLASS:-XI** SUBJECT:-CHEMISTRY **MAXIMUM MARKS: 55 DURATION: 150 MINUTES** Instructions:-1. All questions are compulsory; howeverquestion21, 26, and 27 has internal choice. 2. Use of calculator is not permitted, however logarithmic table will be provided on request. 3. Each Question should be attempted only once. Section-A consists of 9 questions of 1 mark each. Section-B consists of 10 questions of 2 marks each. Section-C consists of 6 questions of 3 marks each. Section-D consists of 2 questions of 4 marks each. Section-A Q1. An element "X" is most stable in its +2, +5 and +7 oxidation states. Therefore the element X is 1 ♦Co ♦ Fe **♦**Mn Cr A particular reaction at 27°C, for which $\Delta H < 0$ and $\Delta S < 0$ is found to be non-spontaneous. The Q2. reaction may proceed spontaneously if _ 1 ♦ temperature is decreased • temperature is increased • temperature is kept constant ♦ it is carried out in an open vessel at 27 O3. A chemical reaction $A \xrightarrow{\frown} B$ is said to be at equilibrium when 1 ♦ a complete conversion of A to B takes place ♦only 10% of conversion of A to B has taken place ♦ conversion of A to B is 50% complete ♦ rate of formation of A is just equal to rate of formation of B Q4. The reaction given below is an example of _ reaction. 1 $Cl_{2(g)} + 2OH_{(aq)} \longrightarrow H_2O + ClO_{(aq)} + Cl_{(aq)}$ ♦ decomposition \blacklozenge disproportionation ♦ combination ♦ displacement The reagent that can convert But-2-yne to trans But-2-ene is Q5. ♦ H₂, Ni ♦ H₂, Pd/C ♦ H₂, Na & NH₃ ♦ Na & ethanol Write the electronic configuration of Fe^{+3} ion and state its magnetic behavior. Q6. Draw a neat labeled diagram of the calorimeter used for measuring heat change at constant pressure. Q7. 1 Tomato juice has an approximate pH of 4.2. Calculate the concentration of hydrogen ions in the juice. Q8. Arrange the following metals in the decreasing order in which they displace each other from their salt Q9. 1 solutions: Al, Zn, Fe, Mg and Cu Given $E^{0}_{Mg+2/Mg} = -2.36 \text{ V}$ $E^{0}_{Al+3/Al} = -1.66 \text{ V}$ $E^{0}_{Cu+2/Cu} = +0.34 \text{ V}$ $E^{0}_{Zn+2/Zn} = -0.76 \text{ V}$ $E^{0}_{Fe+2/Fe} = -0.44 \text{ V}$ Section-B Q10 56.2 g of a solute is dissolved in 710 mL of benzene (density = 0.88 g/cm^3) to obtain 0.5m solution. 2 Calculate the molar mass of the solute. Q11 Draw the geometrical structures of molecules formed by (a) $sp^{3}d$ and (b) $sp^{3}d^{2}$ hybridization 2 respectively. Q12 Among petrol, vegetable oil and water which one will have higher vapour pressure and why?. 2 Q13 State Le Chatelier Principle and write the effect of change in concentration of reactants on the reaction equilibrium. 2 Q14 For a reaction involving gases derive a relationship to show that the change in energy at constant 2 pressure is greater than the change in energy at constant volume by a factor $\Delta n_g RT$. Q15 Write stepwise balanced ionic equations for the reaction between potassium dichromate and potassium 2 iodide in acidic medium to give Cr(III) ion and solid iodine. Page 13 of 17

Section-D	
a)With reference to group 13 elements define "inert pair effect" and state the nature of their oxides.b) Write the name and formula of the compound known as "inorganic benzene". Draw the structure of orthoboric acid.	4
 OR a)With reference to group 14 elements define " catenation" and arrange their dihalides in the increasing order of their stability. b) Draw the structure of silicate ion.Name the zeolite used to convert alcohol directly to gasoline. 	
 a)Write chemical equations to show the conversion of propene to 2,3-Dimethylbutane in two steps only. b)Write labeled chemical equations to show what happens when bromoethene reacts with sodamide and the compound formed is passed through red hot iron tube at 873K. 	4
OR	
 a)Write chemical equations to show the conversion of phenol to acetophenone in two steps only. b)Write labeled chemical equations to show what happens when butan-2-ol is heated with conc sulphuric acid and the compound formed is reacted with cold dil KMnO₄ solution 	
	 a)With reference to group 13 elements define " inert pair effect" and state the nature of their oxides. b) Write the name and formula of the compound known as "inorganic benzene". Draw the structure of orthoboric acid. OR a)With reference to group 14 elements define " catenation" and arrange their dihalides in the increasing order of their stability. b) Draw the structure of silicate ion.Name the zeolite used to convert alcohol directly to gasoline. a)Write chemical equations to show the conversion of propene to 2,3-Dimethylbutane in two steps only. b)Write labeled chemical equations to show what happens when bromoethene reacts with sodamide and the compound formed is passed through red hot iron tube at 873K. OR a)Write chemical equations to show the conversion of phenol to acetophenone in two steps only. b)Write labeled chemical equations to show what happens when butan-2-ol is heated with conc sulphuric acid and the compound formed is reacted with cold dil KMnO₄ solution

	GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION															
	QUESTION WISE ANALYSIS AND BLUE PRINT OF CHEMISTRY PAPER(FROM 2017-18)															
	EXA	MINATION	N:-FINAL EX	KAM			CLASS:-	XI			MAX	RATION:-150 MINUTES				
													DIFFIC			DURATION
		UNIT	MARKS		1		RM	100%		JECTI		100%	LEV		100%	MINUTES
	Q.NO	NO		MCQ	VSA	SA-I	SA-11	LA	ĸ	U	S	A	EASY	AVE	DIF	
TOTAL	25		55	5	4	20	18	8	16	25	6	8	17	25	13	141
%				9%	7%	36%	33%	15%	29%	45%	11%	15%	31%	45%	24%	
	1	2*	1	1						1				1		2
	2	6	1	1					1				1			2
	3	7	1	1						1				1		2
	4	8	1	1					1				1			2
	5	13	1	1								1	1			2
	6	2*	1		1					1				1		2
	7	6	1		1						1		1			5
	8	7	1		1							1			1	3
	9	8	1		1					1				1		3
	10	1*	2			2						2		2		5
	11	4*	2			2					2		2			5
	12	5*	2			2				2				2		5
	13	6	2			2			2					2		5
	14	7	2			2				2			2			5
	15	8	2			2						2			2	5

Page **16** of **17**

16	10	2		2				2			2			5
17	11	2		2			2					2		5
18	13	2		2				2				2		6
19	13	2		2				2				2		6
20	12*	3			3		3			V		3		7
21	6	3			3			1		2	1		2	8
22	7	3			3		1	2			3			7
23	8	3			3			1	2			1	2	8
24	10	3			3		3				1	2		8
25	13	3			3			3			1	2		8
26	11	4				4	3		1		1	1	2	10
27	13	4				4		4					4	10

*core content

Page **17** of **17**