Shri Shantadurga Higher Secondary School, Bicholim-Goa. First Formative Examination August-2017

Std: XII Science

Answer Key

Marks: 20

Date: 11/08/2017

Chemistry

Time: 1 Hr

	Section-A	
Q.1.	The transparent soaps are prepared by dissolving the soap in <u>Ethano</u>l # Glycerol # Ethanol # Propanol # Ethylene glycol	(1)
Q.2	An example of ambident nucleophile is NO_2^{-1}	(1)
	$\# OH^{-} \# NH_{3} \# NO_{2}^{-} \# OR^{-}$	
Q.3.	Draw a neat labelled diagram showing magnetic separation process of concentration of an ore.	(1)
	Finely ground ore	
	Magnetic roller Magnetic particles	
	Non-magnetic	
	particles	
Q.4.	Answer the following	(1)
	1. A FCC lattice cube is formed by atoms A and B .if atom A is present at the corner of the cube and the atom B at the faces of the cube. Find out the formula of the compound?	
	Ans.	
	$\frac{1}{-\times 8} = 1$ atom	
	Contribution of atom A at eight corners of the cube = $\frac{8}{1}$	
	Contribution of atom at each face = $\frac{1}{2}$ atom	
	$\frac{1}{-\times}$ 6=3 atoms	
	Contribution of atom B at six faces of the cube = 2^{2}	
	Formula of the compound = AB ₃	
	OR	
	LiCl in excess of Li is pink in colour. Give reason	
	Ans. When crystals of LiCl are heated in an atmosphere of Li vapour, the Lithium atoms are deposited on the surface of the crystal. The Cl-ions diffuse to the surface of the crystal and combine with Li atoms to give LiCl. This happens by loss of electron by Lithium atoms to form Li ⁺ ions. The released electrons diffuse into the crystal and occupy anionic sites. As a result the crystal now has an excess of Lithium. The anionic sites occupied by unpaired electrons are called <i>F-centres</i> (from the German word <i>Farbenzenter</i> for colour centre). They impart Pink colour to the crystals of LiCl.	

